
 1

Article Journal Applied Computing
December 2020 Vol.4 No.15 1-8

Comparison of numerical methods in code as solvers for simulation of robotic

systems

Comparación de métodos numéricos en código como solucionadores para simulación

de sistemas robóticos

TORRES-DEL CARMEN, Felipe de Jesús†*, JARAMILLO-HERNÁNDEZ, Ricardo, DÍAZ-

SÁNCHEZ, Arnaldo and NÚÑEZ-ALTAMIRANO, Diego Alfredo

Universidad de Guanajuato. Engineering Division Campus Irapuato-Salamanca, Department of Mechanical Engineering.

ID 1st Author: Felipe de Jesús, Torres-Del Carmen / ORC ID: 0000-0001-5792-2098, CVU CONACYT ID: 170819

ID 1st Coauthor: Ricardo, Jaramillo-Hernández / ORC ID: 0000-0002-9212-2261

ID 2nd Coauthor: Arnaldo, Díaz-Sánchez / ORC ID: 0000-0003-1334-3515

ID 3rd Coauthor: Diego Alfredo, Núñez-Altamirano / ORC ID: 0000-0002-6709-8108

DOI: 10.35429/JCA.2020.15.4.1.8 Received July 10, 2020; Accepted December 30, 2020

Abstract

This research introduces the development of the

implementation and comparison of algorithms of numeric

methods which solve a system of ordinary differential

equations, commonly known like solvers. These were

applied to a robotic system with 4 grades of freedom in

open loop based on the non-linear dynamic model in the

joint space. The performance of the robotic system

solution simulated on Matlab®/Simulink® with S-Function

has been assumed to be the reference criterion to contrast

the results that were get from codification of the solvers.

Moreover, some inferences were set for each one of the

algorythms, for instance, simulation time and computing

cost. The analysis of the results lets account the

implementation of the code of the numeric methods for

simulation purposes, thus, it may aid for the optimization

of simulation times and computing cost.

Solvers, Numeric methods, Robotic systems

Resumen

Este trabajo presenta el desarrollo de la implementación y

comparación de algoritmos de métodos numéricos que

resuelvan un sistema de ecuaciones diferenciales

ordinarias, comúnmente conocidos como solucionadores.

Los cuales fueron aplicados a un sistema robótico de 4

grados de libertad, en lazo abierto, basado en el modelo

dinámico no lineal en el espacio de articulación. Se ha

considerado el desempeño de la solución del sistema

robótico, a través de Matlab®/Simulink® y con el uso de la

S-Function, como el criterio de referencia para comparar

los resultados obtenidos de la codificación de los

solucionadores. Además, se hacen inferencias de los

tiempos de simulación de cada uno de los algoritmos. El

análisis de los resultados permite considerar la

implementación del código de los métodos numéricos para

propósitos de simulación, que contribuyan a optimizar los

tiempos de simulación y costo computacional.

Solucionadores, Métodos numéricos, Sistemas

robóticos

Citation: TORRES-DEL CARMEN, Felipe de Jesús, JARAMILLO-HERNÁNDEZ, Ricardo, DÍAZ-SÁNCHEZ, Arnaldo

and NÚÑEZ-ALTAMIRANO, Diego Alfredo. Comparison of numerical methods in code as solvers for simulation of robotic

systems. Journal Applied Computing. 2020. 4-15:1-8.

* Correspondence of the Author (Email: fdj.torres@ugto.mx)

† Researcher contributing as first author.

©ECORFAN-Spain www.ecorfan.org/spain

ISSN-2531-2952

ECORFAN ® All rights reserved.
TORRES-DEL CARMEN, Felipe de Jesús, JARAMILLO-

HERNÁNDEZ, Ricardo, DÍAZ-SÁNCHEZ, Arnaldo and NÚÑEZ-

ALTAMIRANO, Diego Alfredo. Comparison of numerical

methods in code as solvers for simulation of robotic systems. Journal

Applied Computing. 2020

 2

Article Journal Applied Computing
December 2020 Vol.4 No.15 1-8

Introduction

The use of technology in industrial automation

processes has been focused on the application of

robotic systems. Rigid manipulative robots in

particular have been the subject of research and

development for more than two decades.

Furthermore, in higher-level educational

programs related to robotics, they have been

distinguished by the synthesis and analysis of

robotic arms of various degrees of freedom

(g.d.l.) such as the type PUMA, SCARA,

SCORBOT, etc.

The cost of a rigid manipulator is not

affordable for the purposes of teaching-learning

processes. Therefore, the use of simulations

allows to understand the dynamic behavior of a

robotic system based on its mathematical model,

which is a system of nonlinear ordinary

differential equations (ODE), whose solution is

carried out through the implementation of

method algorithms. numerical, commonly

known as solvers.

The most widely used simulation

platform in robotics issues is Matlab® /

Simulink®, where the solvers that the platform

itself has pre-installed are applied; even the

simulations in Matlab® / Simulink® have

served as a reference for simulations carried out

through other software. In this way, in (Velarde

et al., 2010) a complete simulation of a 5 g.d.l.

robot is made. for trajectory tracking in Matlab®

/ Simulink®; (Gouasmi et al., 2012) presents the

simulation of the movement of a 2-R robot with

a revolutionary configuration, where it is

simulated through Solidworks® and compared

with the simulation in Matlab® / Simulink®; en

(Alshamasin et al., 2012) simulates the

dynamics of a SCARA robot by means of solid-

dynamics software and is verified by the

simulation run in Matlab® / Simulink®. Over

time, various simulation softwares have been

developed, however, Matlab® / Simulink®

continues to be the simulation platform used, for

example, in (Domazetovska et al., 2019),

(Cheng et al., 2019), (Yoo, 2019), (Orta, 2019)

and (Alwan et al., 2019).

It is important to note that the

configuration of the block diagram in Simulink®

allows the use of various solvers, fixed-pitch and

variable-pitch, which are already pre-installed in

Matlab® software. Even, results of comparisons

between the different solvers have been

reported, as in (Eshkabilov, 2020) and

(Korotchenko and Smoryakova, 2019).

However, algorithms in solver code have not

been compared to simulate nonlinear systems,

which could optimize simulation times and

hardware resources.

This work aims to compare the

performance of the algorithms of numerical

methods such as ODE solvers, developed and

implemented in code in Matlab®, which are

applied to the dynamic model of a 4 g.d.l.

SCARA manipulator robot; the comparison is

made taking as a reference the results obtained

in simulation carried out on the Simulink®

platform using S-Function and the ode45 solver.

The rest of the document is organized as

follows: in the Dynamic Model section the

mathematical model of the SCARA robot is

described; In the ODE Solvers section the

algorithms of numerical methods used in the

comparison are detailed; the Simulink®

Diagram section presents the block model of the

SCARA robot simulation, as well as the

description of the S-Function that has been used.

The Results section shows and analyzes the

comparisons and, finally, the conclusions are

presented in the corresponding section.

SCARA robot dynamic model

The robotic system to be used in the

methodology of this work is a rigid manipulator

SCARA (Selective Compliance Articulated

Robot Arm) of 4 g.d.l. According to Fig. 1, the

arm consists of 3 rotational joints θ1, θ2 and θ3;

as well as a translational joint, denoted by d4.

ISSN-2531-2952

ECORFAN ® All rights reserved.
TORRES-DEL CARMEN, Felipe de Jesús, JARAMILLO-

HERNÁNDEZ, Ricardo, DÍAZ-SÁNCHEZ, Arnaldo and NÚÑEZ-

ALTAMIRANO, Diego Alfredo. Comparison of numerical

methods in code as solvers for simulation of robotic systems. Journal

Applied Computing. 2020

 3

Article Journal Applied Computing
December 2020 Vol.4 No.15 1-8

Figure 1 SCARA robot of 4 g.d.l.

Source: Our elaboration

The dynamics of the movement in the

articulation space of this manipulator, it is

possible to know it through its mathematical

model, which is obtained through the Euler-

Lagrange methodology, where it has been

assumed that the angular positions θ1, θ2 and θ3

will be the generalized coordinates q1, q2 and q3,

respectively, and the vertical displacement d4 of

the end effector will be the generalized

coordinate q4. Thus, the dynamic model of the

robot, in its matrix representation, is given by:

𝑀𝑖(𝑞𝑖)�̈�𝑖 + 𝐶𝑖(𝑞𝑖, �̇�𝑖)�̇�𝑖 + 𝐵𝑖�̇�𝑖 + 𝑔𝑖(𝑞𝑖) = 𝜏𝑖 (1)

Where Mi (qi) ∈Rn is the inertia matrix,

Ci (qi, qi) ∈R(n×n) is the Coriolis matrix and

centrifugal forces, Bi is a diagonal matrix of the

viscous friction coefficients of each joint, gi

qi∈Rn is the vector of gravitational forces, τi∈Rn

is the vector of input torques or torques. So,

[

𝑀11 𝑀12 𝑀13 𝑀14

𝑀21 𝑀22 𝑀23 𝑀24

𝑀31 𝑀32 𝑀33 𝑀34

𝑀41 𝑀42 𝑀43 𝑀44

] [

�̈�1

�̈�2

�̈�3

�̈�4

] +

[

𝐶11 𝐶12 𝐶13 𝐶14

𝐶21 𝐶22 𝐶23 𝐶24

𝐶31 𝐶32 𝐶33 𝐶34

𝐶41 𝐶42 𝐶43 𝐶44

] [

�̇�1

�̇�2

�̇�3

�̇�4

] +

[

𝐵1 0 0 0
0 𝐵2 0 0
0 0 𝐵3 0
0 0 0 𝐵4

] [

�̇�1

�̇�2

�̇�3

�̇�4

] + [

0
0
0

𝑚4𝑔

] = [

𝜏1

𝜏2

𝜏3

𝜏4

] (2)

Where:

𝑀11 = 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 + 𝑚1𝑙𝑐1
2 + 𝑚2𝑙1

2

+ 𝑚2(𝑙𝑐2
2 + 2𝑙1𝑙𝑐2cos𝑞2)

+ (𝑚3 + 𝑚4)(𝑙1
2 + 𝑙2

2

+ 2𝑙1𝑙2cos𝑞2)

𝑀12 = 𝐼2 + 𝐼3 + 𝐼4 + 𝑚2(𝑙𝑐2
2 + 𝑙1𝑙𝑐2cos𝑞2)

+ (𝑚3 + 𝑚4)(𝑙2
2 + 𝑙1𝑙2cos𝑞2)

𝑀13 = 𝑀23 = 𝑀33 = 𝐼3 + 𝐼4

𝑀14 = 𝑀24 = 𝑀34 = 0

𝑀22 = 𝐼2 + 𝐼3 + 𝐼4 + 𝑚2𝑙𝑐2
2 + (𝑚3 + 𝑚4)𝑙2

2

𝑀44 = 𝑚4

𝐶11 = −𝑚2𝑙1𝑙𝑐2sin𝑞2�̇�2

− (𝑚3 + 𝑚4)𝑙1𝑙2sin𝑞2�̇�2

𝐶12 = −𝑚2𝑙1𝑙𝑐2sin𝑞2(�̇�1 + �̇�2)
− (𝑚3 + 𝑚4)𝑙1𝑙2sin𝑞2(�̇�1 + �̇�2)

𝐶21 = 𝑚2𝑙1𝑙𝑐2sin𝑞2�̇�1

+ (𝑚3 + 𝑚4)𝑙1𝑙2sin𝑞2�̇�1

𝐶13 = 𝐶14 = 𝐶22 = 𝐶23 = 𝐶24 = 𝐶31 = 𝐶32

= 𝐶33 = 𝐶34 = 𝐶41 = 𝐶42 = 𝐶43

= 𝐶44 = 0

ODE solvers

Numerical methods are algorithms that allow

obtaining non-trivial solutions. In particular, a

dynamic system such as the SCARA robot is

modeled by means of a set of second order

nonlinear ordinary differential equations.

Therefore, it is necessary to integrate the system

of equations twice to obtain the function that

represents the angular and translational

displacement of each of the robot's joints. This is

achieved through the implementation of

numerical method algorithms known as solvers.

In the literature there is a great diversity

of solvers: those called fixed-step solvers in

which the increment of the time vector is a

constant number and in each increment the set of

ODE is solved; and the so-called variable pitch

solvers, in which the increase in the time vector

is variable and the set of ODE is also solved at

that instant of time given by each increment.

ISSN-2531-2952

ECORFAN ® All rights reserved.
TORRES-DEL CARMEN, Felipe de Jesús, JARAMILLO-

HERNÁNDEZ, Ricardo, DÍAZ-SÁNCHEZ, Arnaldo and NÚÑEZ-

ALTAMIRANO, Diego Alfredo. Comparison of numerical

methods in code as solvers for simulation of robotic systems. Journal

Applied Computing. 2020

 4

Article Journal Applied Computing
December 2020 Vol.4 No.15 1-8

Euler's method

Let be an initial value problem,

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦), 𝑦(𝑎) = 𝑦0 (3)

To approximate its solution on the

interval [a, b], it is necessary to divide the

interval into N equal subintervals, such that ti =

a + ih for i = 0,1,…, N with ℎ =
(𝑏−𝑎)

𝑁
.

Where h is known as the step size.

Assuming that y (t) is twice continuously

differentiable in [a, b], the Euler integration

method is given by (Kharab and Guenther,

2019):

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓(𝑡𝑖, 𝑦𝑖), 𝑖 = 0,1, … , 𝑁 − 1 (4)

The code made for this solver is

developed in MATLAB® language.

Runge-Kutta method of 4th order

The fourth order Runge-Kutta integration

method (RK4) is given by (Kharab and

Guenther, 2019):

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) (5)

For 𝑖 = 0,1, … , 𝑁 − 1, con:

𝑘1 = 𝑓(𝑡𝑖, 𝑦𝑖)

𝑘2 = 𝑓 (𝑡𝑖 +
ℎ

2
, 𝑦𝑖 +

ℎ

2
𝑘1)

𝑘3 = 𝑓 (𝑡𝑖 +
ℎ

2
, 𝑦𝑖 +

ℎ

2
𝑘2)

𝑘4 = 𝑓(𝑡𝑖 + ℎ, 𝑦𝑖 + ℎ𝑘3)

This algorithm has been implemented in

MATLAB® language.

Matlab® ode45 solver

Matlab® software has several differential

equation solvers pre-installed, including ode45,

which is a numerical method based on the 4th

and 5th order Runge-Kutta with an adjustment to

make a variable step size, which uses a large /

small step depending on the function to be

solved, if it is smooth enough (continuously

differentiable) (Yang et al., 2020).

In (Eshkabilov, 2020) it is indicated that

the ode45 solver is the one recommended for

most ODE problems, therefore, it is the solver

that has been chosen to be considered as a

reference in the simulations carried out with the

other numerical methods.

Simulation in Matlab® / Simulink®

Based on the literature consulted, the simulation

platform commonly used for robotic system

applications is Simulink® from Matlab®, which

also serves as a reference to compare simulations

carried out in other software.

In this work, the simulation of the

angular behavior of the joints of a SCARA-type

robot manipulator was carried out, based on its

non-linear dynamic model in the joint space,

through the coding of the S-Function Level-1

block of Matlab® / Simulink®. The variable

step ode45 solver and a simulation time of 10

seconds have been configured.

An S-Function is a Simulink® one-block

computer language description, written in

MATLAB®, C, C ++, or Fortran. S-Functions

are compiled as MEX files, which are

dynamically linked subroutines that the

interpreter automatically loads and executes. In

particular, the S-Function Level-1 has been

encoded in MATLAB® language, therefore, an

.m file has been created that is called by the S-

Function block. The code used is detailed in

Annex A. Fig. 2 shows the simulation scheme

carried out in Simulink®.

Figure 2 Simulation diagram in Simulink®

Source: Our elaboration

ISSN-2531-2952

ECORFAN ® All rights reserved.
TORRES-DEL CARMEN, Felipe de Jesús, JARAMILLO-

HERNÁNDEZ, Ricardo, DÍAZ-SÁNCHEZ, Arnaldo and NÚÑEZ-

ALTAMIRANO, Diego Alfredo. Comparison of numerical

methods in code as solvers for simulation of robotic systems. Journal

Applied Computing. 2020

 5

Article Journal Applied Computing
December 2020 Vol.4 No.15 1-8

The S-Function Level-1 block allows

avoiding the use of different blocks such as

integrator, constant, step, gain, etc. and their

respective connections, which makes the

simulation diagram long and confusing. At the

output of the S-Function Level-1 block, a block

has been placed to save the value of the variables

and the data can be accessed from the Matlab

workspace. It is important to note that the option

to save the data of the output variables will allow

to graph the results of the simulations with the

other solvers to make the comparison.

In addition to the block diagram in

simulink, programming lines were coded in

MATLAB® language to indicate the initial

count of the time the simulation takes when it is

sent to run, as well as the time at the end and

lines of code for the generation of the

corresponding graphs, as shown in Fig. 3.

Figure 3. Code to start the simulation in Simulink®

Source: Our elaboration

Simulation results

The results of the simulations carried out of the

dynamic behavior of the SCARA robot are

presented below. Note that the simulation in

Simulink® is taken as the reference path for the

other simulations.

The trajectory of each of the robot's joints

is plotted, starting from the introduction of

excitation input pairs to initiate the movement of

the robotic arm. The pairs used are given in

Table 1.

 Input torque

𝒒𝟏 10𝑠𝑖𝑛(0.002𝜋𝑡) 𝑁𝑚

𝒒𝟐 1 + 5𝑐𝑜𝑠(20𝜋𝑡) 𝑁𝑚

𝒒𝟑 1 + 2𝑠𝑖𝑛(2𝜋𝑡) 𝑁𝑚

𝒒𝟒 30 𝑁

Table 1 Input pairs to the robotic system

Source: Our elaboration

In all cases, the initial positions of the

joints is 0 rad, in addition, the simulation time is

10 seconds.

The simulation in Simulink® was

performed with the variable pitch ode45 solver,

configured with a maximum pitch and relative

tolerance of 1e-3 for both. The RK4 and Euler

solvers were carried out with an integration step

of 0.01 seconds.

In Fig. 4-7 the trajectories of the joints

q_1, q_2, q_3 and q_4 are shown; where the

black line represents the result of the simulation

carried out in Simulink®, the dotted blue line is

the simulation of the 4th order Runge-Kutta

solver, the red line corresponds to the code

simulation of the ode45 solver (preloaded in

Matlab®), finally, with a dotted green line is the

trajectory that results from the simulation with

the Euler solver.

Figure 4 Path of joint q_1 with all solvers

Source: Our elaboration

ISSN-2531-2952

ECORFAN ® All rights reserved.
TORRES-DEL CARMEN, Felipe de Jesús, JARAMILLO-

HERNÁNDEZ, Ricardo, DÍAZ-SÁNCHEZ, Arnaldo and NÚÑEZ-

ALTAMIRANO, Diego Alfredo. Comparison of numerical

methods in code as solvers for simulation of robotic systems. Journal

Applied Computing. 2020

 6

Article Journal Applied Computing
December 2020 Vol.4 No.15 1-8

Figure 5 Path of joint q_2 with all solvers

Source: Our elaboration

All the solvers used obtain the same

results in joints q_2-q_4 of the SCARA robot,

with the exception of joint q_1. This is detailed

in Fig. 8, which is a close-up of this trajectory in

the time period with the greatest difference

between the solvers.

Figure 6 Path of joint q_3 with all solvers

Source: Our elaboration

Figure 7 Path of joint q_4 with all solvers

Source: Our elaboration

It is observed that in joint q_1, the RK4

solver correctly follows the path given by the

simulation carried out in Simulink®; the other

solvers used (ode45 in code and Euler in code)

move away from the reference path, this is due

to the integration step, which can be reduced to

achieve a better approach to the solution offered

by Simulink®, however, would have an impact

on runtime.

Figure 8 Zoom in on the path of joint q_1 with all solvers

Source: Our elaboration

In addition to the comparison of the

trajectories, the analysis is done based on the

execution time that each simulation takes to

weight the solver with the best performance. For

this purpose, the methodology that was followed

was to carry out 10 simulations with each of the

solvers, then obtain the average of the execution

times, these are shown in Table 2.

 Euler

code

ode45

code

RK4

code

Simulink®

1 0.75 0.81 0.78 2.76

2 0.81 0.76 0.75 2.71

3 0.79 0.80 0.76 2.64

4 0.83 0.83 0.8 2.72

5 0.81 0.78 0.83 2.73

6 0.83 0.83 0.79 2.73

7 0.78 0.80 0.79 2.69

8 0.75 0.78 0.76 2.70

9 0.77 0.85 0.82 2.69

10 0.87 0.83 0.78 2.93

Average 0.799 0.807 0.786 2.73

Table 2 Solver execution times in seconds

Source: Our elaboration

ISSN-2531-2952

ECORFAN ® All rights reserved.
TORRES-DEL CARMEN, Felipe de Jesús, JARAMILLO-

HERNÁNDEZ, Ricardo, DÍAZ-SÁNCHEZ, Arnaldo and NÚÑEZ-

ALTAMIRANO, Diego Alfredo. Comparison of numerical

methods in code as solvers for simulation of robotic systems. Journal

Applied Computing. 2020

 7

Article Journal Applied Computing
December 2020 Vol.4 No.15 1-8

Conclusions

Various algorithms of numerical methods,

known as solvers, can be used to simulate the

dynamic behavior of robotic systems such as the

SCARA robot.

In the simulations carried out as

teaching-learning activities, widely known

software such as Matlab® / Simulink® is

commonly used, which uses preloaded solvers in

the software installation. However, the code

implementation of the numerical methods:

Rnge-Kutta of 4th order and the Euler method

have shown a correct performance in the

developed simulation compared to the

simulation done in Simulink®.

According to the graphs of the

trajectories, the solver that fully followed the

Simulink® simulation is the Runge-Kutta of 4th

order in code. In addition, this same solver was

the one that presented the best performance

according to the execution time, it even had an

average execution time less than the time of the

Euler method, which is known for its coding

simplicity.

 Acknowledgments

The authors want to thank the support provided

by the University of Guanajuato, Campus

Irapuato-Salamanca Engineering Division, for

the realization of this project.

References

Alshamasin, M. S., Ionescu, F., & Al-Kasasbeh,

R. T. (2012). Modelling and simulation of a

SCARA robot using solid dynamics and

verification by MATLAB/Simulink.

International Journal of Modelling,

Identification and Control, 15(1), 28-38.

Alwan, H. M. y Rashid, Z. H. (2019). Motion

Control of Three Links Robot Manipulator

(Open Chain) with Spherical Wrist. Al-

Khwarizmi Engineering Journal, 15(2), 13-23.

Cheng, L. I. U., Guo-Hua, C. A. O. y Yong-Yin,

Q. U. (2019, October). Motion simulation of

Delta parallel robot based on Solidworks and

Simulink. In 2019 IEEE 3rd Advanced

Information Management, Communicates,

Electronic and Automation Control Conference

(IMCEC) (pp. 1683-1686). IEEE.

Domazetovska, S., Mickoski, H. y Djidrov, M.

(2019). Kinematic modeling and analysis of

serial manipulator. Mechanical Engineering–

Scientific Journal.

Eshkabilov, S. L. (2020). Practical MATLAB

Modeling with Simulink: Programming and

Simulating Ordinary and Partial Differential

Equations. Apress.

Eshkabilov, S. L. (2020). Practical MATLAB

Modeling with Simulink: Programming and

Simulating Ordinary and Partial Differential

Equations. Apress.

Gouasmi, M., Ouali, M., Fernini, B., &

Meghatria, M. H. (2012). Kinematic modelling

and simulation of a 2-R robot using solidworks

and verification by MATLAB/Simulink.

International Journal of Advanced Robotic

Systems, 9(6), 245.

Kharab, A., & Guenther, R. (2019). An

introduction to numerical methods: a

MATLAB® approach. CRC press.

Korotchenko, A. G. y Smoryakova, V. M.

(2019). On a comparison of several numerical

integration methods for ordinary systems of

differential equations. In International

Conference on Numerical Computations:

Theory and Algorithms (pp. 406-412). Springer,

Cham.

Orta Hernández, M. (2019). Modelado, control y

simulación de manipuladores aéreos incluyendo

modelos de sensores.

Velarde-Sanchez, J. A., Rodriguez-Gutierrez, S.

A., Garcia-Valdovinos, L. G., & Pedraza-

Ortega, J. C. (2010, February). 5-DOF

manipulator simulation based on MATLAB-

Simulink methodology. In 2010 20th

International Conference on Electronics

Communications and Computers

(CONIELECOMP) (pp. 295-300). IEEE.

Yang, W. Y., Cao, W., Kim, J., Park, K. W.,

Park, H. H., Joung, J., ... & Im, T. (2020).

Applied numerical methods using MATLAB.

John Wiley & Sons.

ISSN-2531-2952

ECORFAN ® All rights reserved.
TORRES-DEL CARMEN, Felipe de Jesús, JARAMILLO-

HERNÁNDEZ, Ricardo, DÍAZ-SÁNCHEZ, Arnaldo and NÚÑEZ-

ALTAMIRANO, Diego Alfredo. Comparison of numerical

methods in code as solvers for simulation of robotic systems. Journal

Applied Computing. 2020

 8

Article Journal Applied Computing
December 2020 Vol.4 No.15 1-8

Yoo, D. S. (2019). 3D Modeling and Balancing

Control of Two-link Underactuated Robots

using Matlab/Simulink. Journal of information

and communication convergence engineering,

17(4), 255-260.

