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Abstract 

 

The main objective in this paper is to solve the 

maximin problem in infinite-horizon zero-sum 

stochastic differential games with Markovian 

switchings. To this end, we propose a verification 

theorem which is proved using standard dynamic 

programming techniques. This theorem is applied to 

solve the maximin problem: maximize the expected 

utility from terminal wealth with the risk minimum 

in a financial market with Markovian switching 

assuming the mean rate of return of the stocks, is not 

given a priory (because risk). 

 

Black-Scholes market, Hamilton-Jacobi-Bellman 

equations, zero-sum games 

 

 

Resumen 

 

El principal objetivo del trabajo consiste en encontrar 

la solución de un problema maximin dentro de un 

juego diferencial estocástico con cambios 

markovianos en horizonte infinito. Para tal fin, 

proponemos teorema de verificación el cual es 

probado usando técnicas de programación dinámica. 

El Teorema de verificación asegura la existencia de 

una solución al problema maximin: maximizar la 

utilidad esperada de la ganancia terminal con mínimo 

riesgo en un mercado financiero con cambios 

markovianos asumiendo que la tasa de rendimiento 

promedio de los activos es desconocida. 

 

Mercado Black-Scholes, Ecuaciones de Hamilton-

Jacobi-Bellman, Juegos de suma cero 
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Introduction  
 

In this work a verification theorem 

(Theorem 2.4) is proved which includes the 

Hamilton- Jacobi-Bellman (HJB) equation 

for two-player finite-horizon zero-sum 

stochastic differential games with 

Markovian switchings, see Escobedo et al. 

(2012) and Mao et al.  (2006). This verification 

theorem allows to study the maximin 

(minimax) problem. As an application from 

theorem, a financial market in which the 

prices of assets are governed by stochastic 

differential equations with coefficients 

depending on a continuous-time finite state 

homogenous Markov chain is considered, 

see Baüerle et al. (2004) and Di Masi et al. 

(1994). The states of the Markov chain 

represent the market conditions.  

 

The market is incomplete due to the 

randomness of    the coefficients. To 

simplify the exposition we will suppose that 

the market consists of one bond and one 

risky stock only. Moreover, we consider a 

completely observable market, which 

means that the investor or decision-market 

has full knowledge of the different asset 

prices   and the market conditions. The 

problem in this application consists in 

finding investment portfolios that maximize 

the expected utility of terminal wealth (optimal 

investment problem). This problem leads to 

a maximin problem whose solution we are 

interested to find. Using the verification 

theorem and assuming that the mean rate of 

return of the stock is not given a priori, the 

problem will be solved explicitly using 

logarithmic utility. 

 

The work is organized as follows. In 

Section 2 we study the diffusion processes 

where the coefficients evolve as a 

continuous-time Markov chain. This kind of 

processes is called diffusion processes with 

Markovian switchings. Also, we study the 

general zero-sum stochastic differential 

game. In Section 3 the main theorem is 

proved. In Section 4 we describe the financial 

market we want to study and we show how to 

solve a optimal investment problem with the 

logarithmic utility using the verification 

Theorem 2.4. 

 

 

 

 

1. Stochastic differential games with 

Markovian switchings 

 

Let Y (t)  be  a  continuous-time  Markov  

chain  on  the  filtered  probability  space  (Ω, 

F , F̂, P) which taking values in a finite space E 

= {1, 2, . . . , N } with generator Q = {qi,j}N×N 

given  

 

𝑃(𝑌(𝑠 + 𝑡) = 𝑗|𝑌(𝑠) = 𝑖) = 𝑞𝑖𝑗𝑡 +

𝑜(𝑡),                                                              (1)
  

for states  𝑖 ≠j the number qij ≥ 0  is the 

transition rate from i to j, while 𝑞𝑖𝑖 =
−𝛴𝑗≠𝑖𝑞𝑖𝑗. We assume that Y (t) is right 

continuous with finite limits from the left. 

Consider the controlled Markov-modulated 

diffusion process (also known as a piecewise 

diffusion or a switching diffusion or a 

diffusion with Markovian switching) 

defined by  

 

𝑑𝑋(𝑡) = 𝑏(𝑋(𝑡), 𝑌(𝑡), 𝑢(𝑡))𝑑𝑡

+ 𝜎(𝑋(𝑡), 𝑌(𝑡))𝑑𝑊(𝑡),     
 

𝑥(0) = 𝑥,   𝑌(0) = 𝑖,                                     (2) 

 

where b : ℝn × E × U →  ℝd and σ : ℝd 

× E →  ℝd×n are given functions, usually 

called the drift and the dispersion matrix, 

respectively, and W (·) is a n-dimensional 

standard Brownian motion independent of Y 

(·). The stochastic process u(·) is  a  U −valued  

process called the control process and the set 

U ⊂ ℝm is called the control (or action) 

space. 

 

To begin, we impose the following 

conditions on the coefficients b, σ and on the 

Markov chain Y (t). 

 

Assumption 2.1. Ito conditions. The 

functions b(x, i, u) and σ(x, i, u) are 

measurables, and satisfy for some constant K 

≥ 0: 

(a) (Linear growth condition) for all x ∈ ℝd 

and i ∈ E 

|b(x, i, u) + σ(x, i, u)| ≤ K(1 + |x|), 

 uniform u ∈ U. 

(b)  (Local Lipschitz condition) for all x ∈ ℝd,   

| 

b(x, i, u) − b(y, i, u)| 

 + |σ(x, i, u) − σ(y, i, u)| ≤ K |x − y|, 
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(c) In addition, the Markov chain Y (t) is 

such that the joint process (X(t), Y (t)) 

satisfies the Feller property. 

(d) The  control process U is a compact set.   

 

Assumption 2.1 (a)-(b) ensure the 

existence of a unique solution of (2). On the 

other hand, even though X(t) itself is not 

necessarily Markov, it is a well-known fact 

(see for instance Mao et al. (2006)) that the 

joint process (X(t),Y(t)) is Markov. 

Furthermore, Assumption 2.1 (c) implies that 

(X(t), Y (t)) is strong Markov. 

 

Stochastic differential games 
 

The main references in this section are, 

Escobedo et al. (2012), Oksendal (2003) and 

Mao et al. (2006). Consider the stochastic 

differential equation with Markovian  

switchings (2) and let f : ℝd ×   E × U → ℝ 

and g : ℝd × E → ℝ be given functions, called 

the payoff rate and the bequest function, 

respectively. Let R be an open subset of Rd × 

E, called the solvency region, and let  

 

т𝑅 ≔ inf{𝑡 > 0: (𝑋(𝑡), 𝑌(𝑡)) ∉ 𝑅}            (3) 

be the first exit time of (X(·), Y (·)) from R. We 

assume that     

 

𝔼𝑧
𝑢[∫ │𝑓(𝑋(𝑡), 𝑌(𝑡), 𝑢(𝑡))│𝑑𝑡 +

т𝑅

0

│𝑔(𝑋(т𝑅), 𝑌(т𝑅))│] < ∞      ]                  (4) 

 

for all control process u(·) ∈ U  and z ∈ 

R. Associated to each control u(·)  and each 

initial   point z = (x0, i0) ∈ R we define the 

payoff functional Ju(z) of the form 

 

𝐽𝑢(𝑧) = 𝔼𝑧
𝑢[∫ │𝑓(𝑋(𝑡), 𝑌(𝑡), 𝑢(𝑡))│𝑑𝑡 +

т𝑅

0

│𝑔(𝑋(т𝑅), 𝑌(т𝑅))]                                      (5) 

 

Here and in (4) we interpret g(X(тR), Y 

(τR)) as 0 if тR = ∞. 

Now suppose that there are two controllers 

rather than one. Then the control u(t) has 

the form 

𝑢(𝑡) = (𝜃(𝑡), 𝜋(𝑡)), 𝑡 ≥ 0 

 

 

 

 

 

 

where θ(·) is a control (or strategy) of 

player 1, and π(·) is a control (or strategy) of 

player 2. In this case, the process X(·) in (2) 

denotes the state of a two player stochastic 

differential game with Markovian 

switchings. 

 

Definition 2.2. For the payoff functional 

𝐽𝜃(𝑡),𝜋(𝑡)(𝑧) in (5) with u(t) = (θ(t), π(t)), the 

game is called a zero-sum game if the payoff 

𝐽𝜃(𝑡),𝜋(𝑡)(𝑧)  represents the gain for player 1  

and the loss for player 2. 

 

For every initial state z = (x, i) ∈ R, 

player 1 tries to maximize Jθ,π(z) over the set 

of her admissible controls θ(·), whereas 

player 2 tries to minimize Jθ,π(z) over the set 

of her controls π(·). Let Θ and Π be given 

families of admissible controls θ and π, 

respectively. The functions 

 

𝒰(𝑧) ≔
𝑖𝑛𝑓

𝜋 ∈  П
(

𝑠𝑢𝑝

𝜃 ∈ Θ
𝐽(𝜃,𝜋)(𝑧))                 (6) 

 

ℒ(𝑧) ≔
𝑠𝑢𝑝

𝜋 ∈  Θ 
(

𝑖𝑛𝑓

𝜃 ∈ П
𝐽(𝜃,𝜋)(𝑧))                 (7) 

 

play an important role. The function ℒ(𝑧) 

is called the game’s lower value, and 𝒰(𝑧) is the 

game’s upper value. Clearly, we have 

 

ℒ(𝑧) ≤ 𝒰(𝑧) for all 𝑧 ∈ R 

 

If the upper and lower values coincide, 

then the game is said to have a value, and the 

value of the game, call it V(z), is the 

common value of ℒ(𝑧) and 𝒰(𝑧), i.e., 

 

𝑉(𝑧) ≔ ℒ(𝑧) = 𝒰(𝑧) for all 𝑧 ∈ R              (8) 

 

The general maximin problem 

consists, essentially, in finding a pair of 

strategies that attain the lower value (7). 

Hence, the precise definition of the problem 

we are interested in is as follows. 

 

Problem 2.3. Find (θ∗, π∗) ∈ Θ × Π such 

that 

ℒ(𝑧) ≔ 𝑠𝑢𝑝
𝜋∈ Θ 

( 𝑖𝑛𝑓
𝜃∈П

𝐽(𝜃,𝜋)(𝑧)) =

𝐽(𝜃∗,𝜋∗)(𝑧)∀ 𝑧 ∈ R                                        (9) 
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If such a pair (θ∗, π∗) exists, then it is 

called a maximin strategy or an optimal 

control. 

 

Similarly, the minimax problem is to find 

(θ∗, π∗) ∈ Θ × Π such that 

𝑢(𝑧) ≔ 𝑖𝑛𝑓
𝜋∈ П

( 𝑠𝑢𝑝
𝜃∈Θ

𝐽(𝜃,𝜋)(𝑧)) =

𝐽(𝜃∗,𝜋∗)(𝑧)  ∀  𝑧 ∈  R                                     (10) 

 

Strategies. We restrict ourselves to 

consider only admissible Markov controls in 

Problem 2.3. Hence we assume that 

 

𝜃(𝑡) = 𝜃̅(𝑡, 𝑋(𝑡), 𝑌(𝑡)) and  

𝜋(𝑡)

= 𝜋̅(𝑡, 𝑋(𝑡), 𝑌(𝑡)),                                        (11) 

for some functions 𝜃̅: ℝ+ × ℝd × E →  K1,𝜋:̅ ℝ+ 

× ℝd × E →  K2, where K1, K2 are compact 

subsets of 𝑈 ⊂ ℝ𝑑. As customary we do not 

distinguish notationally between 𝜃and 𝜃̅, π and      

π. Thus our controls can simply be identified 

with (deterministic) functions  𝜃(𝑡, 𝑧) and 

𝜋(𝑡, 𝑧),   𝑧 ∈  ℝd × E. 

 

Main Result 
 

When the control 𝑢 = (𝜃(𝑡, 𝑧), 𝜋(𝑡, 𝑧)) ∈ Θ × 

Π is Markovian, the corresponding system (2) 

becomes a diffusion process with  Markovian  

switchings,  whose generator 𝐿𝜃,𝜋 is given by  

 

𝐿𝜃,𝜋𝑣(𝑧) = 𝑣𝑥(𝑧)𝑏(𝑧, 𝜃(𝑡, 𝑧), 𝜋(𝑡, 𝑧)) +
1

2
 

Trace[𝑣𝑥𝑥(𝑧)𝐷(𝑧, 𝜃(𝑡, 𝑧), 𝜋(𝑡, 𝑧)] +        

∑ 𝑞𝑖𝑗𝑣(𝑧)

𝑁

𝑗=1

                                                                (12) 

 

witch 𝑧 = (𝑥, 𝑖) in R, 𝐷 ≔ 𝜎𝜎∗and 𝑣 ∈ 𝐶2 

(ℝd × E)        

 

Let 𝔗   be the set of all F𝑡−stopping 

times  𝜏 ≤ 𝜏𝑅. We  can  now  state  the  main  

result  of this work: 

 

Theorem 2.4. (The HJB equation for 

zero-sum differential games with Markovian 

switchings). Suppose that ν ∈ C2(R) ∩ C(R̅) 

satisfies the equation 

 
𝑠𝑢𝑝

𝜃∈ Θ
𝑖𝑛𝑓
𝜋∈П

{𝐿𝜃,𝜋𝑣(𝑧) + 𝑓(𝑧, 𝜃, 𝜋)} = 0 ∀ 𝑧 ∈ R         (13) 

 

with boundary condition 

 

𝑣 (𝑋𝜃,𝜋(𝜏𝑅), 𝑌(𝜏𝑅))

= 𝑔 (𝑋𝜃,𝜋(𝜏𝑅), 𝑌(𝜏𝑅)) 𝜒{𝜏𝑅

< ∞} 

at time 𝜏𝑅 . If (𝜃̂(𝑡, 𝑧), 𝜋̂(𝑡, 𝑧)) ∈ 𝐾1 × 𝐾2 are 

admissible Markov controls such that 
𝑠𝑢𝑝

𝜃∈ Θ
𝑖𝑛𝑓
𝜋∈П

{𝐿𝜃,𝜋𝑣(𝑧) + 𝑓(𝑧, 𝜃, 𝜋)} = 0 ∀ 𝑧 ∈ R 

=𝐿𝜃̂,𝜋̂𝑣(𝑧) + 𝑓(𝑧, 𝜃, 𝜋̂) = 0 ∀ 𝑧 ∈ R 

then 

𝑣(𝑧) = ℒ(𝑧) =
𝑠𝑢𝑝

𝜃 ∈ Θ
(

𝑖𝑛𝑓

𝜋 ∈ П
𝐽𝜃,𝜋(𝑧))

=
𝑠𝑢𝑝

𝜃 ∈ Θ
𝐽𝜃,𝜋̂(𝑧)

=
𝑖𝑛𝑓

𝜋 ∈ П
𝐽𝜃,̂𝜋(𝑧))

= 𝐽𝜃̂,𝜋̂(𝑧),                        (14) 

and 

(𝜃(𝑡, 𝑧), 𝜋̂(𝑡, 𝑧)) is an optimal (Markov) control       

(15) 

 

Proof. Suppose that 𝑣 ∈ 𝐶2(𝑅) ∩ 𝐶(R̂) 

and(𝜃(𝑡, 𝑧), 𝜋̂(𝑡, 𝑧)) ∈ 𝐾1 × 𝐾2 satisfy the hy- 

potheses of the theorem. Then we have 

(i) 𝐿𝜃,𝜋̂(𝑡,𝑧)𝑣(𝑧) + 𝑓(𝑧, 𝜃, 𝜋̂(𝑡, 𝑧)) ≤ 0 ∀  ∈

 𝐾1, 𝑧 ∈ 𝑅 

(ii) 𝐿𝜃̂(𝑡,𝑧),𝜋𝑣(𝑧) + 𝑓(𝑧, 𝜃(𝑡, 𝑧), 𝜋) ≥ 0 ∀ 𝜋 ∈

 𝐾2, 𝑧 ∈ 𝑅 

(iii) 𝐿𝜃̂(𝑡,𝑧),𝜋̂(𝑡,𝑧)𝑣(𝑧) +

𝑓 (𝑧, 𝜃(𝑡, 𝑧), 𝜋̂(𝑡, 𝑧)) = 0 ∀ 𝑧 ∈ 𝑅 

(iv) 𝑋𝜃,𝜋(𝜏𝑅) ∈ 𝜕𝑅 a.s. on {𝜏𝑅 > ∞} and  
lim

𝑡→𝜏𝑅
−

𝑣(𝑋𝜃,𝜋(𝑡), 𝑌(𝑡))

= 𝑔(𝜏𝑅), 𝑌(𝜏𝑅))𝜒{𝜏𝑅>∞} 

a.s. for (𝜃, 𝜋) ∈ 𝐾1 × 𝐾2, 𝑧 ∈ 𝑅. 
 (v) the family {𝑣(𝑋𝜃,𝜋(𝜏), 𝑌(𝜏))}𝜏∈𝔗 is 

uniformly integrable, for all 𝑧 ∈ 𝑅 and 
(𝜃, 𝜋) ∈ 𝐾1 × 𝐾2 because of the fact that  

𝑣 is in 𝐶2(𝑅) ∩ 𝐶(𝑅̅). 
Choose (𝜃, 𝜋) ∈ 𝐾1 × 𝐾2. Then by 

Dynkin’s formula we have 

𝔼𝓏[𝑣(𝑋(𝜏𝑅
(𝑁)

), 𝑌(𝜏𝑅
(𝑁)

))] = 𝑣(𝑥, 𝑖) +

𝔼𝓏[∫ 𝐿𝜃,𝜋𝑣
𝜏𝑅

(𝑁)

0
(𝑋(𝑡), 𝑌(𝑡))𝑑𝑡],              

(16) 

where (𝑋(𝑡), 𝑌(𝑡)) = (𝑋𝜃,𝜋(𝑡), 𝑌(𝑡)) 

and  

𝜏𝑅
(𝑁)

= 𝜏𝑅 ∧ 𝑁 ∧ inf{𝑡 > 0: | 𝑋(𝑡)|≥ 𝑁}, 
         𝑁 = 1,2, …  

 

Our first goal is to show that 𝑣(𝑧) ≤ ℒ(𝑧) 

for all 𝑧 in 𝑅 
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(I) If we apply (16) to (𝜃, 𝜋̂) and use (ii) for 

all 𝑧 we get 𝔼𝓏[𝑣(𝑋(𝜏𝑅
(𝑁)

), 𝑌(𝜏𝑅
(𝑁)

))] ≥
𝑣(𝑧) −

𝔼𝓏[∫ 𝑓(𝑧, 𝜃(𝑡,
𝜏𝑅

(𝑁)

0
𝑋(𝑡), 𝑌(𝑡)), 𝜋(𝑡, 𝑋(𝑡) 

, 𝑌(𝑡))) 𝑑𝑡], 
or 
𝑣(𝓏) ≤

𝔼𝓏[∫ 𝑓(𝓏, 𝜃(𝑡,
𝜏𝑅

(𝑁)

0
𝑋(𝑡), 𝑌(𝑡)), 𝜋(𝑡, 𝑋(𝑡), 𝑌(𝑡))) 𝑑𝑡 +

𝑣(𝑋(𝜏𝑅
(𝑁)

), 𝑌(𝜏𝑅
(𝑁)

))].  

Letting 𝑁 → ∞ and using (iv) and (v) we 

obtain  

𝑣(𝓏) ≤ 𝐽𝜃̂,𝜋(𝓏).                                   (17) 

Since this holds for all 𝜋 ∈ ∏ we deduce 

that 

𝑣(𝓏) ≤ inf
𝜋∈∏

𝐽𝜃̂,𝜋(𝓏).                          (18)  

Hence 

𝑣(𝓏) ≤ sup
𝜃∈Θ

( inf
𝜋∈∏

𝐽𝜃̂,𝜋(𝑥, 𝑖)) = ℒ(𝓏))  

(19) 

for all 𝑧 in 𝑅. 

Our second goal is to prove the reverse of 

(19), so that ℒ(𝑧) ≤ 𝑣(𝑧) for all 𝑧 in 𝑅. 
(II) If we apply (16) to (𝜃, 𝜋̂), with 𝜋̂ ∈ ∏, and 

use (i) for all 𝑧 we get 

𝔼𝓏[𝑣(𝑋(𝜏𝑅
(𝑁)

), 𝑌(𝜏𝑅
(𝑁)

))] ≥ 𝑣(𝓏) −

𝔼𝓏[∫ 𝑓(𝓏, 𝜃(𝑡,
𝜏𝑅

(𝑁)

0
𝑋(𝑡), 𝑌(𝑡)), 𝜋̂(𝑡, 𝑋(𝑡) 

, 𝑌(𝑡))) 𝑑𝑡], 
or 𝑣(𝓏) ≥

𝔼𝓏[∫ 𝑓(𝓏, 𝜃(𝑡,
𝜏𝑅

(𝑁)

0
𝑋(𝑡), 𝑌(𝑡)), 𝜋̂(𝑡, 𝑋(𝑡), 

𝑌(𝑡))) 𝑑𝑡 + 𝑣(𝑋(𝜏𝑅
(𝑁)

), 𝑌(𝜏𝑅
(𝑁)

))].  
Letting 𝑁 → ∞ and using (iv) and (v) we 

obtain  

𝑣(𝓏) ≥ 𝐽𝜃,𝜋̂(𝓏) ≥ inf
𝜋∈∏

𝐽𝜃,𝜋(𝓏).           (20) 

Since this holds for all 𝜃 ∈ Θ we deduce 

that  

𝑣(𝓏) ≥ sup
𝜃∈Θ

( inf
𝜋∈∏

𝐽𝜗,𝜋(𝓏) = ℒ(𝓏).   (21) 

(III) Finally, we apply (16) to (𝜃,̂ 𝜋̂) and 

proceed as above. Then we end up with   

𝑣(𝓏) = 𝐽𝜃,̂𝜋̂(𝓏).                                   (22) 

Combining (19), (21) and (22) we 

conclude that 

 

ℒ(𝑧) ≤ 𝑣(𝑧) = 𝐽𝜗,̂𝜋̂(𝑧) ≤ ℒ(𝑧), 
 

this proves (14) and (15) for all z in R. For 

our application, note that if 𝑣 ∈ 𝐶1,2(ℝ+ × ℝ𝑑 ×
𝐸), then (2) becomes a diffusion process with 

Markovian switchings whose generator 𝐿𝜃,𝜋 is 

given by  

 

𝐿𝜃,𝜋𝑣(𝑡, 𝑧) = 𝑣𝑡(𝑡, 𝑧) +

𝑣𝑥(𝑡, 𝑧)𝑏(𝑡, 𝓏, 𝜃(𝑡, 𝑧), 𝜋(𝑡, 𝑧)) +
1

2
𝑇𝑟𝑎𝑐𝑒[𝑣𝑥𝑥(𝑡, 𝑧)𝐷(𝑡, 𝑧, 𝜃(𝑡, 𝑧), 𝜋(𝑡, 𝑧)] +

∑ 𝑞𝑖𝑗𝑣(𝑡, 𝑧).𝑁
𝑗=1                             (23) 

for each 𝑧 ∈ ℝ𝑑 × 𝐸.  
 

 

Application: Financial market with 

Markovian switching 

 

The main references in this section are, Baüerle 

et al. (2004), Di Masi et al. (1994), Fernholz 

(2002), Karatzas et al. (1998), Mataramvura et 

al. (2005). 

 

Let (Ω, ℱ, 𝒫) be a probability space 

endowed with a filtration ℱ̂ = {ℱ𝑡, 𝑡 ≥ 𝑜}, 

which is a nondecreasing right-continuous 

family of 𝜎−algebras ℱ𝑡. We consider a 

model of a financial market as a pair of 

assets: a risk-free asset (bond) 𝐵 and a risky 

(stock) asset 𝑆, which can be represented by 

their prices 𝐵(𝑡) and 𝑆(𝑡), 𝑡 ∈ ℝ+. In this 

case one refers to a (𝐵, 𝑆)−market in 

continuous time.  

 

We assume that the prices of the bond and 

the stock are stochastic processes defined on         

the filtered probability space (Ω, ℱ, ℱ̂, 𝒫). In the 

classical Black-Scholes formula for option 

pricing the price dynamics of the underlying 

asset is given by 

 

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊  𝑆(0) > 0,    (24) 

 

the average rate of return 𝜇 and the 

volatility 𝜎 are constants. However, it has been 

proved  by many authors that both of them, 

specially the volatility, are random processes in 

many situations. There is a strong evidence to 

indicate that the rate 𝜇 is a Markov jump process 

which can be modelled by a Markov chain. Of 

course, when the rate jumps, the volatility will 

jump accordingly. Taking these jumps into 

account, the classical model (24) has recently be 

generalized to form a new financial model 

 

 𝑑𝑆(𝑡) = 𝜇(𝑌(𝑡))𝑆(𝑡)𝑑𝑡 +
𝜎(𝑌(𝑡))𝑆(𝑡)𝑑𝑊(𝑡)  𝑆(0) > 0.                     (25) 

 

 

 

 

 

 



29 

Article                                                                      ECORFAN Journal-Republic of Colombia  
                                                                              June 2018 Vol.4 No.6 24-32 

 

 
ISSN-On line: 2539-1372 

ECORFAN® All rights reserved. 

 

ESCOBEDO-TRUJILLO, Beatris, COLORADO-GARRIDO, Darío, 

ALAFFITA-HERNÁNDEZ, Francisco and HERRERA-ROMERO, 

José. A verification theorem in stochastic differential games with 
markovian switchings. ECORFAN Journal-Republic of Colombia.  

2018 

Here 𝑌(𝑡) is a Markov chain with a finite 

state space 𝐸 = {1,2,∙, 𝑁}and 𝜇, 𝜎 are mapping 

from 𝐸 to [0, ∞). So, if the Markov chain is 

initially in state 𝑌(0) = 𝑖 ∈ 𝐸0, then before its 

first jump from 𝑖0 to 𝑖1 ∈ 𝐸 at its first (random) 

jump time𝜏1, the underlying asset price obeys 

the following geometric Brownian motion 

 

𝑑𝑆(𝑡) = 𝜇(𝑖0)𝑆(𝑡)𝑑𝑡 + 𝜎(𝑖0)𝑆(𝑡)𝑑𝑊(𝑡) 
 

𝑆(0) > 0                                                      (26) 

 

with initial value 𝑋(𝑡0) = 𝑥0. During this 

period from 𝑡0 to 𝜏1 the rate and volatility are 

𝜇(𝑖0) and 𝜎(𝑖0), respectively. At time 𝜏1, the 

Markov chain jumps at time𝜏2. During the 

period from 𝜏1to𝜏2, the underlying asset price 

obeys another geometric Brownian motion 

 

𝑑𝑆(𝑡) = 𝜇(𝑖1)𝑆(𝑡)𝑑𝑡 + 𝜎(𝑖1)𝑆(𝑡)𝑑𝑊(𝑡) 

𝑆(0) > 0                                                       (27) 

 

with initial value 𝑋(𝜏1) at time 𝜏1, and the 

rate and volatility have been switched to 𝜇(𝑖1) 

and 𝜎(𝑖1) from 𝜇(𝑖0)  and 𝜎(𝑖0), respectively. 

The underlying asset price will continue to 

switch from one geometric Brownian motion to 

other according to the Markovian switching. 

 

The equation (25) is known as the 

geometric Brownian motion with Markovian 

switching or the hybrid geometric Brownian 

motion, and a financial market is said to be 

financial market with Markovian switching if the 

stock price obeys the equation (25). 

 

Definition 3.1. An stochastic process 

{𝑋(𝑡)}0≤𝑡≤𝑇is said to be progressively 

measurable or progressive if for every𝑇 ≥ 0, 
{𝑋(𝑡)}0≤𝑡≤𝑇regarded as a function of (𝑡, 𝜔)from 

[0, 𝑇] × ℝ𝑑 is 𝐵([0, 𝑇]) × ℱ𝑡− measurable, 

where 𝐵([0, 𝑇])is the family of all Borel sub-sets 

of [0, 𝑇]. 
 

Definition 3.2. A portfolio (or investment 

strategy) is a pair of ℱ𝑡−progressively 

measurable processes 𝜋0(𝑡) and 𝜋1(𝑡) that 

describe, respectively, the number of units of 

stock and of the bond that we hold at time t. The 

processes can take positive or negative values 

(we will allow unlimited short-selling of stock or 

bond). The value 𝑉(𝑡) of a portfolio 𝜋(𝑡) =

(𝜋0(𝑡), 𝜋1(𝑡)) at time t is given by  

 

 

 

𝑉(𝑡) = 𝜋0(𝑡)𝑆(𝑡) + 𝜋1(𝑡)𝐵(𝑡). 
The definition of a (B, S)-market must be 

completed by indicating what kinds of portfolios 

can be used. The most important class consists 

of the self-financing portfolios. 

 

Definition 3.3. A portfolio is self-

financing if the change in its value depends on 

the change of the assets prices only. That is, 

(𝜋0(𝑡), 𝜋1(𝑡))  𝑖𝑠 𝑠𝑒𝑙𝑓 − 𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑛𝑔  

 ⬌𝑑𝑉(𝑡) = 𝜋0(𝑡)𝑑𝑆(𝑡) + 𝜋1(𝑡)𝑑𝐵(𝑡) 
 

In the following we assume that the 

portfolio satisfies the self-financing property.  

 

We consider a (B, S)-market in continuous 

time with Markovian switching. Moreover, in 

what follows, we suppose that 𝜇, 𝑟, 𝜎: 𝐸 → ℝ+ 

and 𝜇(𝑖) > 𝑟(𝑖) > 0 for all 𝑖 ∈ 𝐸. Our model 

allows for random jumps of the interest rate r, the 

appreciation rate 𝜇 and the volatility 𝜎. These 

jumps can be due to changes of external 

economic factors. The Markov chain 𝑌(∙) is used 

to represent the possible regimes of the financial 

environment. 

 

Let 𝜋(∙) be an admissible portfolio. The 

dynamics of the corresponding value process 

𝑉(𝑡) = 𝑉𝜋(𝑡) is  

𝑑𝑉𝜋(𝑡) = 𝑉𝜋(𝑡)𝜋0(𝑡)
𝑑𝑆(𝑡)

𝑆(𝑡)
+ 𝑉𝜋(𝑡)(1

− 𝜋0(𝑡))
𝑑𝐵(𝑡)

𝐵(𝑡)
 

= 𝑉𝜋(𝑡)𝜋0(𝑡)[𝜇(𝑌(𝑡))𝑑𝑡 + 𝜎(𝑌(𝑡))𝑑𝑊(𝑡)]

+ 𝑉𝜋(𝑡)(1 − 𝜋0(𝑡))𝑟(𝑌(𝑡))𝑑𝑡 

= 𝑉𝜋(𝑡)[{(1 − 𝜋0(𝑡)𝑟(𝑌(𝑡)) +

𝜋0(𝑡)𝜇(𝑌(𝑡))}𝑑𝑡 + 𝜋0(𝑡)𝜎(𝑌(𝑡))𝑑𝑊(𝑡)], (28)        

with 𝑉𝜋(0) > 0, being the initial value, 𝜋0(𝑡) is 

the fraction of the current wealth invested into 

the risky asset at time 𝑡 ∈ [0, 𝑇]. The linear 

stochastic differential equation (28) can be 

solved explicitly and the solution is given by  

 

𝑉𝜋(𝑡) = 𝑉𝜋(0)𝑒𝑥𝑝 {∫ [𝑟𝑌(𝑠)) +
𝑡

0

𝜋0(𝑠)𝜇(𝑌(𝑠)) − 𝑟(𝑌(𝑠)) +
1

2
𝜎2(𝑌(𝑠))𝜋0

2(𝑠)]𝑑𝑠 +

∫ 𝜎(𝑌(𝑠))𝜋0(𝑠)𝑑𝑊(𝑠)
𝑡

0
},                            (29) 
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assuming that  

∫ {|1 − 𝜋0(𝑡)𝑟(𝑌(𝑡))| + |𝜋0(𝑡)𝜇(𝑌(𝑡))|
𝑇

0

+ 𝜋0
2(𝑡)𝜎2(𝑌(𝑡))}𝑑𝑡 < ∞ 𝑎. 𝑠. 

 

Now,  let us assume that the mean rate of 

return 𝜇(𝑌(𝑡)) of the stock, is not given a priori, 

but it is the consequence of the portfolio choice 

𝜋(𝑡) of a “representative” trader. The trader 

tries to maximize the expected utility of her 

terminal wealth by choosing her portfolio 

optimally, while the “market” tries to 

minimize this maximum expected utility by 

choosing µ (Y (t)) accordingly. This leads to 

the minimax problem. 

 

𝑖𝑛𝑓
𝜇𝜖𝑀

(𝑠𝑢𝑝𝔼[𝑈0(𝑉𝜋(𝑇))])
𝜋∈∏

                          (30) 

 

where U0 is a given utility function  and 

M is a given family of admissible processes µ 

(Y (t)). To put this problem in the framework 

of Section 

 

2.2 y 2.3 we define the process X(t) = (X0(t), 

X1(t)) by 

 

𝑑𝑋0 = 𝑑𝑡, 𝑋0 = 𝑥0 = 𝑠 ∈ ℝ                       (31) 

and (see (28)) 

 

𝑑𝑋1(𝑡) =  𝑑𝑉𝜋(𝑡)[{(1 − 𝜋(𝑡))𝑟(𝑌(𝑇)) +

𝜋(𝑡)𝜇(𝑌(𝑡))}𝑑𝑡 + 𝜋(𝑡)𝜎(𝑌(𝑡))𝑑𝑊(𝑡)],    (32) 

With 𝑋1(0) = 𝓍1 = 𝓍 > 0.  
 

Then problem (30) can be formulated as 

follows: 

 

Problem 3.4 Find (𝜇∗, 𝜋∗) ∈ 𝑀 ×
∏ 𝑎𝑛𝑑 𝒰(𝑡, 𝑧)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

𝒰(𝑡, 𝑧) =  𝑖𝑛𝑓
𝜇𝜖𝑀

(𝑠𝑢𝑝𝔼[𝑈0(𝑉𝜋(𝑇))])
𝜋∈∏

=

 𝔼𝑡,𝑧[𝑈0(𝑉𝜇∗,𝜋∗
(𝑇))],                                   (33) 

 

where 𝑧 ∈ R recall that R is the solvency 

region of the process (X (·), Y (·)); see (3). 

In this case, the generator Lµ, π of the 

process (32) has the form 

 𝐿µ,𝜋𝑉(𝑡, 𝑧) =
𝜕𝑣(𝑡,𝑧)

𝜕𝑡
+ 𝑥[(1 − 𝜋)𝑟(𝑖) +

𝜋𝜇(𝑖)]
𝜕𝑣(𝑡,𝑧)

𝜕𝑥
+

1

2
𝜎2(𝑖)𝜋2𝑥2 𝜕2𝑣(𝑡,𝑧)

𝜕𝑥2 +

∑ 𝑞𝑖𝑗𝑣(𝑡, 𝑥, 𝑗)𝑗∈𝐸  

 

For 𝑧 = (𝑥, 𝑖) ∈ 𝑅 fixed and 𝑣 ∈
𝐶1,2(ℝ+ × 𝑅). The HJB equation associated to 

the Problem 3.4 can be written as 

{
𝑖𝑛𝑓𝜇∈𝐾1

(𝑠𝑢𝑝𝜋∈𝐾2
{𝐿µ,𝜋𝑣(𝑡, 𝑥, 𝑖)}) = 0 𝑡 < 𝑇

𝑣(𝑇, 𝑥, 𝑖) = 𝑈0(𝑥).
}         (34) 

 

The following results are from [1]. 

 

Portfolio optimization with logarithmic 

utility. If we specify U0(x) to be of logarithmic 

form, i.e., 

U0(x) = log (x), 

 

then the value function ν(t, z)  =  ν(t, x, i)  
in (34) is the form [1]. 

 

ν(t, x, i) = log (x) + g(t, i)                           (35) 

 

where 𝑔(𝑡, 𝑖) is the unique solution of 

the following system of linear differential 

equations 

 

∂g(t, i)

∂t
+ r(i) +

1

2
(

μ(i) − r(i)

σ(i)
)

2

+ ∑ 𝑞𝑖𝑗𝑣(𝑡, 𝑗)

𝑗∈𝐸

= 0, 0 ≤ t ≤ T 

 

With boundary condition 𝑔(𝑇, 𝑖)= 0 for 

𝑖 ∈ 𝐸. The process 𝜑: 𝐸 → ℝ+ defined as 

 

𝜑(𝑌(𝑡)) =
μ(Y(t))−r(Y(t))

σ(Y(t))
, 

 

with σ(Y(t)) >0 for all t ∈ [0, T], is called 

the market price of risk. Applying the 

generator Lµ, π to ν(t, x, i), we obtain 

𝐿µ,𝜋𝑣(𝑡, 𝑥, 𝑖) =
𝜕𝑔(𝑡,𝑖)

𝜕𝑡
+

1

𝑥
[(1 − 𝜋)𝑟(𝑖) +

𝜋𝜇] +
1

2
𝜋2𝜎2(𝑖)𝑥2 (−

1

𝑥2
) +

∑ 𝑞𝑖𝑗𝑔(𝑡, 𝑗) =𝑗∈𝐸
𝜕𝑔(𝑡,𝑖)

𝜕𝑡
+ (1 − 𝜋)𝑟(𝑖) + 𝜋𝜇 −

1

2
𝜋2𝜎2(𝑖) + ∑ 𝑞𝑖𝑗𝑔(𝑡, 𝑗),𝑗∈𝐸                          (36) 

 

where 𝑉𝜋(𝑡) = 𝑥, 𝜋(𝑡) = 𝜋 𝑎𝑛𝑑 𝜇(𝑖) =
𝜇 𝑓𝑜𝑟 (𝑡, 𝑥, 𝑖)𝑓𝑖𝑥𝑒𝑑. 
 

Maximizing (36) over π we obtain the 

following first-order condition for the maximum 

Point π=𝜋̂ 
𝜕

𝜕𝜋
𝐿𝜇,𝜋𝜐(𝑡, 𝑥, 𝑖) = −𝑟(𝑖) + 𝜇(𝑖) − 𝜋𝜎2(𝑖) = 0 

𝜋̂ =
𝜑(𝑖)

𝜎(𝑖)
                                                         (37) 
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Using the criterion of the second 

derivative we can see that the strategy 𝜋̂ is really 

the maximum point because 
𝜕2

𝜕𝜋2 𝐿𝜇,𝜋𝑣(𝑡, 𝑥, 𝑖) =

−𝜎2(𝑖) < 0. 
Substituting 𝜋̂ into (36), some tedious 

manipulations yield 

 

 𝐿𝜇,𝜋̂𝑣(𝑡, 𝑥, 𝑖) =
𝜕𝑔(𝑡,𝑖)

𝜕𝑡
+ 𝑟(𝑖) +

1

2

𝑟2(𝑖)

𝜎2(𝑖)
 

+
1

2

𝜇2

𝜎2(𝑖)
−

𝑟(𝑖)

𝜎2(𝑖)
+ ∑ 𝑞𝑖,𝑗𝑔(𝑡, 𝑖),𝑗∈𝐸                (38) 

 

and minimizing over 𝜇 gives the first-order 

condition for the minimum point 𝜇 = 𝜇̂ 
𝜕

𝜕𝜇
𝐿𝜇,𝜋̂𝑣(𝑡, 𝑥, 𝑖) =

𝜇(𝑖)

𝜎2(𝑖)
−

𝑟(𝑖)

𝜎2(𝑖)
= 0   obtaining 

𝜇̂ = 𝑟(𝑖).                                                       (39) 

 

The criterion of the second derivative 

shows that µ is a minimum because 
𝜕

𝜕𝜇
𝐿𝜇,𝜋̂𝑣(𝑡, 𝑥, 𝑖) =

1

𝜎2(𝑖)
> 0.   

 

Combining (37) with (39) and substituting 

in (36) we obtain 

 

𝐿𝜇̂,𝜋̂𝜈(𝑡, 𝑥, 𝑖) =
𝜕𝑔(𝑡,𝑖)

𝜕𝑡
+ 𝑟(𝑖) +

∑ 𝑞𝑖𝑗𝑔(𝑡, 𝑗) = 0,𝑗∈𝐸                                       (40) 

 

By substituting (40) into (34) we get the 

following problem:  

 

Problem 3.5. Solve the linear system 
𝜕𝑔(𝑡, 𝑖)

𝜕𝑡
+ 𝑟(𝑖) + ∑ 𝑞𝑖𝑗𝑔(𝑡, 𝑗) = 0,

𝑗∈𝐸

      𝑡 < 𝑇, 𝑖

∈ 𝐸,                                       (41) 

with boundary condition 𝜈(𝑇, 𝑥, 𝑖) =
log(𝑥). 
 

The Problem 3.5 was solved in [1] 

obtaining that 

𝑔(𝑡, 𝑖) = 𝔼𝑡,𝑥,𝑖 ∫ [𝑟(𝑌(𝑠)) +
1

2
𝜑(𝑌(𝑠))2] 𝑑𝑠.

𝑇

𝑡
          (42) 

 

Theorem 2.4 shows that the solution of 

Problem 3.4 in this case is: 

 

𝒰(𝑡, 𝑥, 𝑖) = 𝜈(𝑡, 𝑥, 𝑖) = log(𝑥) + 𝑔(𝑡, 𝑖). 
 

with 𝑔(𝑡, 𝑖) given by (42). We conclude 

that in this game between the trader and the 

market, the market reacts to the trader’s optimal 

portfolio choice by choosing 

 

𝜇̂(𝑡) = 𝑟(𝑌(𝑡)), 𝑡 ∈ [0, 𝑇].  
 

Conclusions 

 

Stochastic models with Markovian switching 

have recently been developed to model various 

financial quantities, such as option pricing and 

stock returns since there is a considerable 

interest, both from a theoretical and practical 

point of view, in a quantitative assessment of the 

risk involved in a financial position. By this 

reason, in this paper we show a form of evalued 

the financial risk using stochastic differential 

games theory. 

 

Notation 

 

a.s.: almost surely 

ℝd: the d-dimensional Euclidean Space 

ℝd×n: the space of real d x n- matrices 

𝜎∗ : the transpose of a vector or matrix 𝜎 

𝑣𝑥 : the gradient of function 𝑣𝑥 

𝑣𝑥𝑥: The Hessian matrix 

𝜒{𝑀}: characteristic funstion of set M 

𝔼𝓏 [X]: expectation of the random variable X 

given the initial state z  

C(ℝ d x E): the space of real-valued continuous 

bounded functions on ℝ d x E 

C 2 (ℝ d  x E): The family of real-valued 

functions 𝑣  defined on ℝ d x E which are twice 

continuously differentiable in x ∈ ℝ d  

C 1,2 (ℝ +  x ℝ d  x E ): The family of all real-

valued functions 𝑣(𝑡, 𝑥, 𝑖)  defined on ℝ +  x ℝ 
d  x E which are twice continuously 

differentiable x∈ ℝ d   and once continuously 

differentiable in t∈ ℝ +   
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