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Abstract 

 

Inventory taking is essential for managing production or warehouse operations, as it allows for precise 

control of the quantity, location, and status of products. However, this task can be demanding, requiring 

constant staff involvement and breaks in activities. Computer vision technology facilitates automatic 

inventory monitoring by detecting and recognizing objects, allowing for accurate quantification of boxes 

stacked on a platform using distance estimation algorithms. This project is divided into two phases: the 

development of software for inventory monitoring and counting, and the creation of an autonomous 

prototype for monitoring in production environments. Currently, work is focused on the first phase, 

which includes training the detection model, setting up an inference server, and integrating it into a web 

interface for inventory consumption and monitoring. 

 

 
 

Process monitoring, Computer vision, Modern web development 
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Resumen 

 

La realización de inventarios es esencial para gestionar operaciones de producción o almacén, ya que 

permite un control preciso de la cantidad, ubicación y estado de productos. Sin embargo, esta tarea puede 

ser demandante, requiriendo participación constante del personal y pausas en las actividades. La 

tecnología de visión por computadora facilita el monitoreo automático del inventario mediante la 

detección y reconocimiento de objetos, permitiendo cuantificar con precisión cajas apiladas sobre una 

plataforma usando algoritmos de estimación de distancia. Este proyecto se divide en dos fases: el 

desarrollo del software para supervisión y conteo de inventario, y la creación de un prototipo autónomo 

para el monitoreo en entornos de producción. Actualmente, el trabajo se centra en la primera fase, que 

incluye el entrenamiento del modelo de detección, la configuración de un servidor de inferencia y la 

integración de este en una interfaz web para el consumo y monitoreo del inventario. 

 

 
 

Monitoreo de procesos, Visión por Computadora, Desarrollo web moderno 
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Introduction 

 

In production environments, process automation has always been a priority, not only to minimize human 

effort, but also to speed up processes and reduce operating costs. Recent advances in artificial intelligence 

(AI) have radically transformed activity monitoring, allowing the implementation of models that process 

images in real time. The combination of these technologies has opened up new opportunities to optimize 

data collection and improve efficiency in various industries. 

 

One of the most promising fields within this trend is computer vision, a branch of AI that allows 

machines to interpret and understand the content of real-world images. However, developing efficient 

models in this area is often a significant challenge due to the need for large volumes of training data and 

the associated computational cost. Computer vision relies on algorithms that repeatedly analyze data to 

identify patterns and recognize objects or differences within images (IBM, 2021). Despite these 

challenges, advancements in tools and platforms have made it easier to access, allowing companies and 

developers to take advantage of its potential without requiring large investments in computing resources. 

 

This project focuses on the implementation of an efficient system to automate inventory taking 

in production environments. In a warehouse, finished products can be organized in a variety of ways, 

which represents an additional challenge when monitoring and managing inventories. Two key factors 

directly influence this task: the type of product, given the diversity of items in a warehouse; and the 

arrangement of these, since they are stored in three-dimensional structures, such as platforms or shelves. 

 

A practical example of these challenges can be seen in an industrial plant that manages two main 

warehouses: one for raw materials and another for materials. The inventory process in these warehouses 

takes approximately one work week, during which no inputs or outputs of materials can be made. This 

not only consumes the time of the personnel in charge, but also requires the support of other teams, which 

affects the overall operation of the plant. 

 

Another example occurs in a plant where finished products are stored in boxes stacked on 

platforms. Staff must perform periodic counts of the material on each pallet, which, although necessary, 

consumes a considerable amount of time and human resources. 

 

Optimizing inventory taking could not only be achieved through automated pallet monitoring, but 

also through more precise control of product inputs and outputs in the warehouse. For this task, 

technological solutions already exist, although most are based on software with local databases. This is 

where modern web development comes into play, offering the possibility of centralizing information 

through remotely accessible servers, improving real-time inventory management and allowing users to 

access updated data from any location. 

 

Modern web development is characterized by asynchronous processing, which allows for 

multiple tasks to be performed simultaneously without blocking processes, improving efficiency even in 

inventory management systems with large volumes of data. Technologies such as Server-Side Rendering 

(SSR) and Client-Side Rendering (CSR) optimize both performance and user experience; SSR reduces 

loading times and improves SEO, while CSR offers greater interactivity by processing data in the 

browser. In addition, CI/CD (Continuous Integration/Continuous Deployment) tools automate code 

integration and deployment, ensuring fast and secure updates. Technologies such as Docker create 

isolated and scalable environments, facilitating application deployment. In terms of communication 

between the frontend and backend, REST APIs and GraphQL allow for efficient resource management, 

with GraphQL being especially useful for requesting only the necessary data in applications with multiple 

dependencies. 

 

A prominent example where computer vision and modern web development work together is 

Intenseye, a platform designed for monitoring activities in industrial environments with the aim of 

preventing accidents. Using advanced object detection, pose estimation and segmentation techniques, 

Intenseye continuously monitors operations to identify potential risks. A success story is its application 

at Coats, a company that was facing serious road safety issues at its industrial facilities, especially in 

India, a country with a high rate of traffic accidents. Thanks to the implementation of Intenseye’s 

software, which integrates with existing CCTV infrastructure and uses artificial intelligence to identify 

risks such as speeding, Coats was able to apply immediate corrective measures, such as driver training.  
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In just one week, they managed to reduce speed violations by 20%, reaching a 50% decrease with 

the continuous enforcement of safety regulations (Intenseye, 2019). 

 

Another success story was in 2022, when a major global food manufacturer experienced a 61% 

reduction in hazard detection within 9 months. This meat producer, with over 78,000 employees and 

exposed to risks from heavy machinery and dangerous instruments, already had robust safety protocols 

in place, however, the incorporation of Intenseye's technology significantly boosted its ability to identify 

hazards in multiple areas simultaneously, improving speed of response and risk mitigation (Intenseye, 

2022). 

 

On the other hand, the autonomous robot Tally, used in stores and supermarkets for inventory 

management, is another example of how computer vision is combined with modern web technologies. 

Tally uses CV and technologies such as RFID/Digimarc to navigate shelves and generate automatic 

reports on product availability. Its advanced detection system enables it to perform inventory audits three 

times a day with 99% accuracy, far surpassing the efficiency of manual processes, which take a week 

and achieve only 65% accuracy. In addition, Tally uses hybrid cloud and edge computing, allowing it to 

process and transmit data in real time with low bandwidth consumption, facilitating the integration of 

information with existing IT systems (Simbe, 2024). 

 

This work is organized in five sections: 

 

- Section 1. Introduction, in this section we present the rationale of the project, the most relevant 

topics and a review of background in similar applications. 

- Section 2. Theoretical Foundation, addresses the key concepts of computer vision, supervised 

learning and its workflow. In addition, essential notions about modern web development are 

included. 

- Section 3. Development, details the steps implemented for object detection and distance 

estimation, along with the description of the architecture and techniques used in the development 

of the web application. 

- Section 4. Results, presents the results obtained using the classification and estimation techniques, 

highlighting the advantages of the web architecture used compared to traditional methods. 

- Section 5. Conclusions, discusses possible improvements, feedback and future work to optimize 

the application. 

 

2. Theoretical Foundation 

 

2.1. Machine Learning and Computer Vision 

 

In recent years, artificial intelligence (AI) has experienced a remarkable boom. Although the concept of 

AI is broad, it refers to applications that mimic human intelligence. Not all AI-based solutions use 

machine learning (ML), but AI, in general, seeks to perform complex tasks efficiently. There are several 

methods within AI, such as those based on rules, neural networks, and computer vision, among others. 

On the other hand, Machine Learning is a specific methodology within AI. All ML solutions are AI 

solutions, but ML focuses on identifying patterns in large data sets to solve specific problems. In this 

approach, humans manually select and extract features from raw data and assign weights to train the 

model. (AWS, 2023) 

 

Within the branch of machine learning. There are three main types of learning: 

 

- Supervised learning 

- Unsupervised learning 

- Reinforcement learning 

 

2.2. Supervised Learning 

 

Supervised learning is a group of algorithms that require a data set composed of example input and output 

pairs. Each pair consists of a data sample used to make predictions and an expected outcome known as a 

label. The term "supervised" comes from the fact that a human supervisor must assign these labels to the 

data. 
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During the training process, samples are iteratively fed to the model. For each sample, the model 

uses the current state of its parameters and generates a prediction. This prediction is compared to the 

corresponding label, and the difference between the two is called the error. The error acts as feedback, 

telling the model what went wrong and how it should adjust its parameters to decrease this error in future 

predictions. In this way, the model updates its values according to the algorithm on which it was designed 

as seen in Figure 1. (Medium, 2018) 

 

Box 1 

 

 
Figure 1 

Supervised learning flow 
Source: obtained from (Medium, 2018) 

 
   

2.3. Modern Web Development 

 

In recent years, web development has seen great technological advances, which have allowed for 

improved development and end-user experience, as well as significantly reduced delivery times. One of 

the main trends in modern web development is client-server architecture. 

 

Web development has seen significant advancements, with client-server architecture becoming a 

cornerstone for efficient application delivery. In this model, tasks are divided between clients (devices 

requesting services) and servers (providers of data or processing). The client sends a request over the 

network, and the server processes it, returning the necessary data. This architecture allows for a smooth 

user experience, especially through techniques like asynchronous programming, which enables the 

system to handle long-running tasks without disrupting other processes. 

 

Rendering in web applications can be approached in two main ways: Client-Side Rendering 

(CSR) and Server-Side Rendering (SSR). CSR involves generating the user interface directly in the client 

browser using JavaScript. It allows for dynamic, interactive web applications, particularly useful for 

single-page applications (SPAs) where content is constantly updated. However, CSR may lead to slower 

initial loading times and challenges with search engine optimization (SEO), as the HTML delivered to 

the client is minimal and requires JavaScript to fully render. 

 

On the other hand, SSR generates complete HTML on the server before sending it to the client. 

This approach ensures faster loading times and improved SEO, as the browser receives a fully rendered 

page. It is often used in applications where quick access and SEO are crucial, such as e-commerce sites. 

However, SSR can lead to a heavier load on the server and may not be as interactive as CSR, which 

excels in dynamic component handling. 

 

A balanced solution often involves combining CSR and SSR. Using SSR for initial rendering 

ensures faster page loads and better SEO, while CSR can enhance interactivity and dynamic content 

updates after the page has loaded. This hybrid approach provides a seamless user experience, merging 

the benefits of both methods: quick load times, search engine optimization, and a dynamic, engaging 

interface. 
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2.4. Agile Scrum Methodology 

 

The Agile Scrum methodology is widely used to manage complex projects, especially in software 

development, by encouraging a collaborative approach based on adaptability and continuous 

improvement. Scrum organizes work into short iterations called "sprints," lasting one to four weeks, 

where the team delivers tangible project increments. Regular meetings ensure alignment and progress. 

This framework allows teams to quickly adapt to changing requirements, prioritizing flexibility and 

efficiency in delivering high-quality products (NimbleWork, 2022). 
 

The Scrum methodology is developed through a series of events in each sprint, as described by 

(NimbleWork, 2022): 

 

- Sprint Planning: At the beginning of each Sprint, a meeting is held to define the Sprint goal and 

select the Product Backlog items to be worked on. 

 

- Daily Scrum: Short daily meeting in which the team synchronizes its activities, shares progress, 

and discusses possible obstacles. 

 

- Sprint Review: After the end of the Sprint, an event is held in which the completed work is 

presented and feedback is received from stakeholders. 

 

- Sprint Retrospective: Reflective meeting that takes place after the review, in which the team 

evaluates its processes and proposes improvements for future Sprints. 

 

- Backlog Refinement: Continuous process of reviewing and adjusting the Product Backlog to 

ensure that the items are ready for the next Sprints. 

 

3. Development 

 

This section details the steps taken to develop the software, including analysis of the environment, 

training of the model, and application of each stage of the Scrum methodology to create the web 

application. 

 

3.1. Environmental Analysis 

 

The environmental analysis addresses how products are arranged on pallets within warehouses, where 

boxes are typically stacked on shelves or pallets aligned in aisles. To effectively count items on these 

platforms, challenges like depth perception and hidden contents need to be considered. Two solutions 

were proposed: 

 

- Two-point detection: Utilizing sensors (e.g., cameras or LIDAR) placed at elevated positions to 

scan items from above, allowing for accurate identification of dimensions and detection of 

irregularities. While this approach provides precise measurements, it complicates the prototype 

design and reduces adaptability across different scenarios. 

- Distance estimation: Calculating object distances using constants like focal length and known 

item measurements. This approach simplifies the design and reduces hardware requirements but 

may be less accurate due to reliance on estimations. 

 

Given its simplicity and adaptability, the distance estimation method was chosen. It involves 

identifying each item for dimensional data and calculating storage capacity by recognizing each platform. 

Two approaches were considered for this identification: 

 

- Object detection: Using a trained model to detect pallets and boxes, suitable for general item 

identification but requiring a large labeled dataset due to the visual similarity between items. 

- Label-based identification: Implementing labels (text, barcodes, or QR codes) with information 

about pallet ID and stored items. Although this approach needs an additional reading module, QR 

codes provide quick and easy identification. 

 

The project opted for the label-based method due to its faster and simpler implementation. 



20 

 

3.2 Model Training 

 

This chapter describes in detail the complete process to prepare and configure an object detection system 

using YOLOv8, the most recent version of the algorithm developed by Ultralytics. The main objective 

was to detect boxes and pallets in a warehouse environment, allowing for more accurate and efficient 

counting of products. To achieve this, the first step was the generation of the dataset, which is one of the 

most critical stages. A series of images were collected that included variations in lighting, viewing angles, 

and resolutions, thus ensuring that the model could learn to recognize objects in various real-world 

conditions. These images were uploaded to the Roboflow platform, which facilitated the task of labeling 

and preprocessing. Using Roboflow's "Annotate" tool, accurate labels were ensured, paying special 

attention to not including partially visible objects, as this could lead to erroneous detections and affect 

the efficiency of the system. 
 

Once the labeling phase was completed, the images were preprocessed. This included two 

essential steps: auto-orientation, which preserves metadata and ensures that bounding boxes remain 

correct even if images are resized or rotated, and adjusting the dimensions of all images to 640x640 

pixels, which is the size required by YOLOv8. After these adjustments, data augmentation techniques 

were applied, such as rotation, variations in saturation and brightness, exposure, and blurring. These 

transformations increased the variety of the dataset without the need to capture more images, which 

helped the model to generalize better and be more robust to different lighting scenarios and angles in a 

production environment. 
 

The final dataset was divided into three sets: training (75%), validation (15%), and test (10%). 

This separation allowed the model's performance to be evaluated on data that was not seen during 

training, thus providing a more accurate measure of its ability to generalize. During training, the 

YOLOv8n version was chosen, which balances accuracy and speed. This version features a lower number 

of parameters compared to larger models, but still offers adequate performance for the needs of the 

project. Training was carried out in Google Colab using an Nvidia T4 GPU, completing in 16 minutes 

for 100 epochs with a dataset of approximately 600 images. The results of the training process included 

performance graphs showing the evolution of the model, as well as the final model saved in PyTorch 

format. 
 

Box 1 

 

 
Figure 2 

Supervised learning flow 
 

To evaluate the effectiveness of the model, prediction tests were performed on videos that were 

not part of the original dataset as seen in Figure 2. This allowed validating the model's ability to detect 

objects in new situations and ensuring that detections were accurate and consistent. Finally, the trained 

model was exported in its original PyTorch format, as it is compatible with the current environment 

running on a computer with ARM architecture. Although YOLOv8 offers the possibility to export to 

other formats such as TensorFlow, ONNX and TensorFlow.js, the choice to keep PyTorch makes it easier 

to implement and use in the context of the project, optimizing the detection of boxes and pallets in 

warehouse environments with efficiency and precision. 
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3.3 Estimation Software 

 

This chapter describes the development and implementation of the system that uses the trained detection 

model to make accurate estimates in a real environment. This software is key to managing the model's 

predictions, allowing tasks such as counting objects and assessing the placement of boxes on platforms. 

 

The software uses the OpenCV library to capture images from various sources (real-time cameras, 

pre-recorded videos, static images) and process them frame by frame. Each frame is analyzed by the 

model trained with YOLOv8n, generating bounding boxes, labels of detected objects, and confidence 

scores as output. 

 

For object tracking throughout the video, Roboflow Supervision is used, and specifically the 

ByteTrack algorithm, which assigns unique identities to detected objects, allowing their movement to be 

tracked between frames. ByteTrack associates the most confident detections in the first phase and, in a 

second phase, uses box similarities (IoU) and appearance to associate lower confidence detections. This 

ensures accurate tracking even under difficult conditions, such as occlusions. 

 

Once the objects have been identified, a specific area (polygon) is defined for counting. This area 

is delimited so that only the objects detected within it are considered, filtering out irrelevant detections. 

In this way, the total number of boxes within the area of interest is counted. Each pallet on the platform 

carries a QR code that stores key information, such as the ID of the pallet and the boxes it contains. Using 

the pyzbar library, these QR codes are decoded to obtain detailed data on the count and dimensions of 

boxes and pallets. QR codes and polygon definition is seen in figure 3.  

 

Box 1 

 

 
Figure 3 

Software Operation 

 

OpenCV tools are used to draw boxes, labels, and confidence scores directly on the processed 

frames. These modified frames are then converted to a JPG format for easy transmission or storage. In 

addition, a generator was implemented that produces and returns these frames continuously, allowing 

real-time integration with other systems or user interfaces. 

 

3.4 Web application 

 

The chapter describes the development of the web application to visualize and manage the estimation 

and inference system, implemented with a client-server architecture that allows real-time data 

transmission. An Agile Scrum methodology was used, facilitating continuous feedback and organization 

in well-defined Sprints. 
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The database selected was SQLite, known for being light, fast and easy to deploy. SQLAlchemy 

was used as an ORM (Object-Relational Mapper) to facilitate data connection and manipulation, 

automating the creation of tables and queries through abstract models. Two main models were defined: 

item and platform, interrelated to manage the inventory. 

 

The server was developed with FastAPI, a modern and fast web framework, ideal for building 

APIs. Unlike other frameworks such as Django, FastAPI offers more flexibility in its structure, allowing 

efficient integration with the estimation module written in Python. The RESTful architecture used 

facilitates client-server communication using HTTP methods (GET, POST, PUT, DELETE), where each 

operation is performed through specific endpoints, and responses are sent in JSON format. Additionally, 

FastAPI includes a Swagger UI interface to interactively test endpoints as seen in figure 4. 

  

Box 4 

 

 
Figure 4 

Swagger UI Server 

 

On the client side, Astro was used, a web framework that improves performance by rendering 

components on the server and sending lightweight HTML to the browser, resulting in faster loading 

times. Astro uses SSR (Server-Side Rendering) to deliver fully rendered content from the server, 

improving user experience compared to traditional frameworks like React, which use CSR (Client-Side 

Rendering). 

 

The development of the user interface (UI) was done by combining Astro and React, allowing 

for a modular and efficient design. Although React runs on the client side, content is first rendered on 

the server, ensuring fast delivery. The web application includes: 

 

- Dashboard: Visualizes the count of objects in the warehouse and provides detailed statistical 

data. 

- Control Panel: Allows monitoring the inference process in real time, including a map with the 

real-time position of the prototype, which will be expanded in future versions of the project. 

 

The combination of Astro and React provides a modern, fast and scalable solution, optimizing 

both development and the end-user experience. 

 

4 Results 

 

4.1 YOLOv8 Custom Model 

 

Starting with the YOLOv8-based module, the F1 curve is a key indicator that combines the precision and 

recall of the model. As can be seen in Figure 5, the "box" class shows high performance with an F1 score 

of 0.9 for detections up to 95% confidence. However, beyond this threshold, the F1 decreases, suggesting 

that the model's recall decreases as confidence increases. On the other hand, the "platform" class performs 

slightly worse, with an F1 score of 0.85, which starts to drop at 80% confidence. This behavior may be 

due to the difference in the number of labels, since "box" has a total of 1404 annotations compared to 

"platform" 143. 
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Box 5 

 

 
Figure 5 

Curve F1 - Confidence 

 

 

In the confusion matrix (Figure 6), we can analyze the detailed performance of the model. The 

Y-axis represents the predicted classes and the X-axis the actual classes. It is observed that the model has 

an accuracy of 94% for “platform” and 98% for “box”. The “background” class reflects false positives 

and negatives: false positives occur when the model detects a non-existent object, while false negatives 

occur when it does not detect a present object. According to the results, the model presents false positives 

in “box” (80%) and “platform” (20%), which can be attributed to the labeling process, where only 

complete objects were annotated. This could explain the detections of partially visible objects that were 

not labeled. 

 

Box 6 

 

 
Figure 6 

Confusion Matrix 

 

 

4.2 Inventory Estimation 

 

The estimating software also met the requirements set. Figure 7 shows that upon detecting a pallet, the 

box count is executed correctly, allowing for remarkable efficiency in processing. Proper labeling has 

been crucial for this functionality. 
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Box 7 

 

 
Figure 7 

Estimation and Detection 

 

 

4.3 Web Application 

 

Regarding the web application, Figure 8 shows a dashboard where warehouse statistics are displayed: 

number of entries and exits, products with the highest stock and those with the highest turnover. All this 

data is presented in graphs to facilitate its interpretation. 

 

In addition, Figure 8 shows the control interface, which allows the estimation software process to 

be viewed in real time, as well as monitoring and managing the prototype status. A section called 

"camera1" is also included, designed to view the prototype path. 

 

Box 8 

 

 
Figure 8 

Dashboard and Control view 

 

 

Conclusions 

 

During the development of this first phase of the project, several challenges arose, especially related to 

the environment. The environment of a warehouse is highly variable, and this variability can represent a 

significant limitation. The diversity in the arrangement of boxes adds complexity to the system, making 

the design of a non-intrusive solution a considerable challenge. 
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Training the model also presented challenges. Typically, a large number of images is required to 

achieve good performance, which involves finding an appropriate balance between model parameters 

and the number of images per class. Despite these difficulties, the model achieved good performance on 

the validation and test datasets, although there is room for improvement. 

 

As for the web application, it is possible to optimize both the design and the functionalities, 

especially with regard to the display of statistical data of the items. It is also advisable to continue 

improving the results obtained in the Lighthouse tests, with the aim of achieving scores close to 100% in 

all metrics. 

 

The following actions are necessary to improve the project in a comprehensive manner: 

 

- Labeling optimization: It is essential to improve and expand the dataset to optimize the 

performance of the model, as well as to improve the detection of objects based on their class and 

not just on the QR code. 

- Adaptation to the environment: It is crucial to adjust the work cycle without making invasive 

modifications to the environment, thus achieving a more adaptable solution. 

- Improvements to the web application: Both the design and the functionalities must be optimized 

to facilitate interaction and data management. 

- Increase in the Lighthouse score: Work on optimizing performance, accessibility and best 

practices until reaching scores close to 100%. 

- Development of a CI/CD system: Implement a Continuous Integration and Deployment pipeline 

that automates these processes, improving efficiency and reducing errors. 

- Development of an autonomous prototype: Move towards a prototype that can perform detections 

autonomously in the warehouse environment. 

 

As for the future of the project, the points mentioned above mark a clear path for the optimization 

and scalability of the system. These improvements will allow saving time and performing continuous 

audits without wasting resources. 
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Abbreviations 

  

AI Artificial Intelligence 

API Aplication Programming Interface 

ARM Advanced Risc Machine 

CCTV Closed Circuit Television 

CD Continuous Deployment 

CI Continuous Integration 

CSR Client Side Rendering 

CV Computer Vision 

GPU Graphic Processing Unity 

HTML Hypertext Markup Language 

HTTP Hypertext Transfer Protocol 

ID Identification 

IOU Intersection Over Union 

IT Information Technology 

JPG Joint Photographic Experts Group 

JSON Java Script Object Notation 

LIDAR Light Detection And Ranging 

ML Machine Learning 

ONNX Open Neural Network Exchange 

ORM Object-Relational Mapping 

QR Quick Response Code 

REST Representational State Transfer 

RFID Radio-Frequency Identification 

SEO Search Engine Optimization 

SPA Single Page Application 

SQL Structured Query Language 

SSR Server Side Rendering 

UI User Interface 

YOLO You Only Look Once 
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