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Quantum dots (QDs) are small semiconductor nanoparticles (NPs) of 2 to 10 nanometers (nm) in diameter. They are composed of

various materials, including semiconductors, metals and carbon. They typically contain only 100,000 atoms and have a well-defined

crystalline structure, allowing them to reveal unique optical and electronic properties (Tao et al., 2019).

They possess qualities such as electron confinement, energy quantization and the ability to absorb and emit light at different

wavelengths depending on their composition and size. Furthermore, due to their tiny size, QDs suffer several quantum effects such

as the discretization of their energy bands. Under these characteristics, QDs can interact with light and matter differently than

materials on a larger scale; this is due to the quantum confinement effect, which occurs when particles are so small that electrons

behave differently due to energy quantization. Quantum confinement occurs when the diameter of the crystal is smaller than its Bohr

radius and influences the properties of the QDs to be quite different from those of macroscopic materials (B.H. Juárez, 2011).

An attractive property of these NPs is that they show confinement in the three directions of space; this is because the electrons are

restricted to move in extremely small regions, less than 10 nm.

QDs can be considered nanocrystalline due to their crystalline structure and nanometric size; and since they are made up of

semiconductor materials, they have a valence band (saturated with electrons) and a conduction band (empty energy band) separated

by an energy difference called a gap.
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The luminescent process in quantum dots occurs through the emission of light when electrons relax from a higher energy state to a

lower energy state. This process consists of four stages, excitation, relaxation, emission and recombination.

INTRODUCTION
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The excitation

phase, the QDs

absorb the energy

of incident light,

which excites the

electrons in the

valence band and

leads them to a

higher energy

state in the

conduction band,

leaving gaps in

the valence band.

The relaxation;

electrons in the

state of higher

energy are

relaxed toward

the lowest energy

state, releasing

the excess of this

in the form of

light generated as

a radiative

combination

between the

generated

electrons and

holes.

The emission

phase, where the

emitted light has

a specific

wavelength,

which depends on

the size and

composition

calculated by the

separation

between the two

energy levels.

The

recombination

phase is

reached, in

which electrons

and gaps

recombine,

releasing excess

energy in the

form of light

(Cui et al.,

2018).
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Semiconductor quantum dots were discovered in 1980 by two independent groups, one in Russia by Alexei I. Ekimov in a glass

array; and the other in the United States of America by Louis E. Brus and Alexander Afros who obtained them in colloidal solutions

(Akimov & AMP; Anshchenko, 2023).

Currently, they are being researched for electro-optical applications such as photovoltaic devices (such as dyes absorbing sunlight),

light-emitting diodes (already with commercial applications such as their use in QLED televisions, for example), photosensing,

photocatalysis and bioimaging (as an alternative to traditional stains for fluorescent microscopy) (Bera et al., 2010; Kairdolf et al.,

2013; Martynenko et al., 2017).

The range of applications for quantum dots is wide, however, there are concerns about the effect on health and the environment with

the use and disposal of these materials which include metal ions such as Cd2+, Pb2+ as well as some non-metals such as As3-, Se2-,

and Te2- considered toxic (Filali et al., 2020; Hardman, 2006). From this point lies the interest in less dangerous alternatives, such as

carbon-based quantum dots (CQDs). These were discovered in 2004 when researchers purified the soot residue of arc flash by

synthesizing carbon nanotubes and noticed unexpected fluorescent properties (Xu et al., 2004). Since that study to date, there has

been great progress in the scientific community that seeks to replace inorganic quantum dots with carbon quantum dots that can

provide similar properties with simple syntheses, at low cost, using widely available precursors, with easy waste management, lower

toxicity and greater biocompatibility, for use in areas of medicine and energy mainly.

BACKGROUND
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The synthesis of CQDs tends to include a breakdown, polymerization, and carbonization of molecules. Normally this process occurs

in some aqueous medium, so the final functional groups on the surface of CQDs are hydrophilic (Cayuela et al., 2016).

In the present paper the CQDs were synthesized using an organic precursor; piloncillo, this contains carbohydrates such as sucrose,

glucose and fructose. This means that it has functional groups such as -OH and -CO; these groups can dehydrate at high

temperatures, which is why it was decided to carry out this synthesis by ultrasound and microwave. This process by which synthesis

is carried out is called sonication, and the type of chemistry used in this technique is known as Sonochemistry (Dong et al., 2013).

SYNTHESIS OF CQDs
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The synthesis of quantum points of carbon was

carried out using a green synthesis taking as a

precursor the glucose from the piloncillo, a base

of Sodium Hydroxide (NaOH), Hydrochloric

Acid (HCl) and an ammonia base (NH3), thus

obtaining a homogeneous solution (Figure 1).

METHODOLOGY
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Figure 1. Homogeneous solutions with piloncillo

as a precursor and base of NH3 (right vessel),

NaOH (medium vessel) and HCl (left vessel)

The sample is crushed with the help of a mortar until a fine

powder is obtained from it, subsequently 3 solutions were

prepared in which they were mixed at 1.0 M of the

respective powder, using this unique concentration for the 3

different solutions with 30 mL of distilled water each,

consequently they were stirred to obtain a homogeneous

mixture with the piloncillo respectively. Once prepared the

solutions with distilled water and the sample were

subjected to the ultrasonic cube for a period of 30 minutes

(Figure 2).

Figure 2. Solutions subjected to ultrasonic

cleaning
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The solutions were subsequently prepared with NaOH, HCl and NH3. For the NaOH solution, 30 mL of distilled water and one 1.0

M solution were used, for the HCl and NH3 solution, a combination of 30 ml of distilled water and a 30% V-V solution was used,

and the solutions were shaken until they were completely diluted.

To complete this process, the homogeneous mixture of piloncillo is placed in a precipitated jar and the precursor solutions are

added to it (Figure 3), again the mixtures are shaken for 15 minutes, subsequently exposed for 30 minutes to the ultrasonic cube

and finally subjected to microwave for 7 minutes at a power of 10 Watts.

METHODOLOGY
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Figure 3. Precursor solution with homogenized base

solution and NH3 (right vessel), NaOH (medium vessel)

and HCl (left vessel)
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Figure 4. CQDs with UV exposure
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Uv-vis spectroscopy

The different solutions contained in the CQDs were exposed to ultraviolet light

radiation, to visually check for luminescent properties. Figure 4 shows samples

obtained from CQDs with and without ultraviolet radiation where the presence of

luminescent properties is confirmed.

The aquatic solutions of quantum dots have their maximum excitation at 341 nm

within the ultraviolet spectrum and an emission close to 442 nm inside the visible

range in a cyan-blue color. From the spectroscopes it is observed that the intensity

of luminescence depends on the increase in the concentration of organic material

(Graph 1) until it reaches an over-saturation in concentration and has a decrease in

intensity due to a phenomenon called cooling of concentration, on the other hand,

the luminescent intensity will depend on the reaction time.

UV-Visible spectra show wide absorption at 280 nm (Graph 1) which is consistent

with what is in various research (A. Mewada, 2013).

The quantum carbon dots have absorption bands at 250 and 280 nm, (Graph 1),

which correspond to the bond and transition π-π* between carbon atoms C=C of

aromatic domains, such absorptions are attributed to the n- π transition of the bands

C=O and C = C. On the other hand, an absorption at 280 nm is observed indicating

the presence of carbon nanoparticles.

RESULTS
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Graph 1. UV-Visible Spectrum of Quantum Carbon Dots
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FT-IR spectroscopy

Infrared spectroscopy was used to identify functional groups present

in the carbon quantum points of the representative samples. IR

spectroscopes (Graph 2) show absorption bands present at 3339,

2118, 1627 and 1159 at 1021 cm-1, indicating the existence of

functional groups OH-, C-H, C-N, C=C and C-O, C-OH, C -O-C,

COOH, C = C (Valencia, 2019). From these results the quantum

carbon dots obtained from piloncillo are composed of multiple

functional groups which makes them highly soluble in water and

makes them good candidates for their application in biotechnology.

Another variable to which the maximum intensity is attributed is to

concentration; where at lower concentrations greater intensity,

because at less matter, there is greater number of interactions for the

formation of quantum dots. (Metha, 2014).

RESULTS
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Graph 2. FT-IR spectrum of Quantum Carbon Dots
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Quantum carbon dots were synthesized, with different solvents, obtained from piloncillo, which are cost-effective for their low

cost of synthesis and environmentally friendly. Optimal emission conditions were found at a concentration of 0.1M in a time of

3 hours, presenting a maximum excitation at 280 nm, which will allow surface passivation for anchoring with biomolecules for

application in biotechnology.

According to the FTIR analysis, the functional groups OH-, C-H, C-N, C = C and C-O, C - OH, C – O-C, COOH, C=C are

identified as responsible for the functionalization of the surface that allowed the obtaining of luminescent properties (blue

emission when excited by ultraviolet light with a wavelength of 254 nm).

CONCLUSION
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