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Abstract 

 

Strictly defined, the concept of self-similarity or self-

similarity applies only to mathematical fractals - which 

arise from the iteration of simple formulae but lead to very 

complex structures, Cantor Dust, Peano Curve, Koch 

Snowflake, whereas in natural or physical fractals - those 

found in nature, such as a fern leaf, an arborisation, 

capillaries - the concept of self-similarity applies, since 

their fractality is only statistical and they possess, 

consequently, an anisotropic scaling,(not having the same 

properties in all dimensions of analysis), which does not 

allow an amplified part of a figure to maintain exactly the 

characteristics of the figure as a whole, is where we find 

Kelly plots. 

 

 

Fuzzy logic, Fractal, Kelly plots 

 

Resumen 

 

En estricto rigor, el concepto de autosemejanza o 

autosimilitud se aplica sólo en fractales matemáticos - que 

surgen de la iteración de fórmulas sencillas pero que llevan 

a estructuras muy complejas, Polvo de Cantor, Curva de 

Peano, Copo de Nieve de Koch, mientras que en los 

fractales naturales o físicos - aquellos que se encuentran 

en la naturaleza: una hoja de helecho, una arborización ,  

capilares y se aplica el concepto de autoafinidad, ya que 

su fractalidad es solamente estadística y poseen, en 

consecuencia, un escalamiento anisotrópico (que no tiene 

las mismas propiedades en todas dimensiones de análisis), 

lo que no permite que una parte amplificada de una figura 

mantenga exactamente las características de la figura 

como un todo, es donde encontramos las parcelas de Kelly. 
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Introduction 

 

It is interesting to note that the irregularity of 

fractal objects becomes a particular 

characteristic of the object and accounts for the 

similarity of its parts with respect to the whole, 

regardless of the scale of analysis used. 

 

There are mathematical fractals that arise 

thanks to the iteration of their mathematical 

formulae, as well as natural fractals or those that 

are found spontaneously in nature. Several 

scientific disciplines have had a progressive 

approach to fractal geometry, linked to its 

mathematical, scientific and technological 

applicability, which stimulates the dedication to 

the observation and study of fractal structures. 

Fractals seem to be a suitable tool for the deep 

mathematical study of, for example, the 

quantitative analysis of singularities that 

naturally appear in dynamical systems. 

 

The contribution of fractals to the 

understanding of the world results in a kind of 

natural philosophy, an integrated view of the 

world, an organising element. However, it is 

recognised that fractal models are currently 

descriptive rather than explanatory, which in no 

way reduces their usefulness and potency for use 

in science. Mandelbrot explains that all the 

natural objects alluded to in the fractal geometry 

of nature are "systems", in the sense that they are 

made up of many different parts articulated 

among themselves, and the fractal dimension 

would describe this rule of articulation. Indeed, 

it would seem that fractal geometry would be, in 

a sense, the geometry of complex systems.  

 

A fractal object has a fractal dimension 

expressed by a decimal number that exceeds its 

original topological dimension, which allows us 

to think that, depending on the irregularity of the 

shape, it becomes more complex and occupies a 

progressively larger place in space. In this way, 

we are faced with a tool that describes the shape 

or pattern (quality) in a complex system through 

a mathematical formalisation. The fractal 

dimension, in this understanding, accounts for 

the dialogue between quantity and quality in an 

object of nature with fractal characteristics. 

 

Let's start with the negative diffusion in 

¾= is the fractal mean. 

 

 
π = It is the diffusion factor (α) 

 

𝑙𝐼(𝐷)𝑁,𝑝,𝑏 ∫ [
𝑙𝑜𝑔

1

2

𝑙𝑛𝜋
∙
1

𝛼
𝑙𝑖𝑚

1

𝛼
𝑙𝑛(𝛼)

]

3

4

+ [
𝑙𝑜𝑔

1

2

𝑙𝑛(
𝜋

𝑑
)
∙

1

𝛼
𝑙𝑖𝑚

1

𝛼
𝑙𝑛(−

1

𝛼
)
]

3

4

+ [
𝑙𝑜𝑔

1

2
∙
1

2

𝑙𝑛[
1

𝜋
]

1
3

] ∙
𝑃𝑖→𝑃𝑐𝑟

𝑃𝑑→𝑃𝑐𝑐

[
1

𝛼
𝑙𝑖𝑚

𝑙𝑛
1

3

] ∙ 𝑙𝑖𝑚(−4) + [
1

𝛼

𝑙𝑛(
3

4
)
] ∙ [

𝑙𝑜𝑔𝜋

𝑙𝑛(−1)
] + [

1

𝛼

𝑙𝑛
1

3

] ∙ [
1

𝛼

𝑙𝑛
1

3

] +

𝑙𝑖𝑚(−4) + {[
1

𝛼

𝑙𝑛
3

4

] ∙ [
𝑙𝑜𝑔3

𝑙𝑛4
] . 𝑙𝑖𝑚 (

1

𝛼
)}                              (1) 

 

 

𝑙𝐼(𝐷)⋯
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An ensemble that has a fine structure, 

i.e., that has detail at whatever scale it is 

observed: 
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The fractal dimension (defined in some 

way) is larger than its topological dimension, 

and does not have to be integer:   
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𝑙𝐼(𝐷) =
𝑁→𝑃

𝑏
…∫ {
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𝑙𝐼(𝐷) =
0.5

(𝑁+𝑏)+(𝑟−𝑐)
− 𝛼     (5) 

 

An L-system is basically a set of rules 

that are applied sequentially to an initial 

sentence. Starting from a string of symbols, 

successively longer and longer strings are 

generated. 

 

𝑙𝐼(𝐷) = [
(𝑁+𝑏)

(𝑟−𝑐)
] − 𝛼  

                                      

The interpretation is that reality is non-

mechanical and non-linear, or in other words, the 

inability of man and science to predict and 

control reality, and that there is an order to 

seemingly random events. 

 

 

 In this plot we can see the positive 

margins in the fractal elasticity. We are also 

interested in periodic points, or states of the 

system that are repeated over and over again. 

Periodic points can also be attractors. 

Sarkovskii's theorem describes the number of 

periodic points in a one-dimensional discrete 

dynamical system. Any deterministic system 

that is sensitive to the initial conditions is called 

chaotic: 

 

𝐼𝐹 = Iteration finite 

 

C= Call 

 

P = Put 

 

𝐿𝐼 = Itto´s Lemma 

 

L= Lagragian 

 

𝐻𝑟= Recursive heteroscedasticity 

 

𝐻𝑅= Recursive homoscedasticity 
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3
4

([
𝑛

𝛼𝑙
]+⌊

𝑛

𝛼𝑙𝑙
⌋+⌈

𝑛

𝛼𝑙𝑙𝑙
⌉)

1
2

]

2

+ 
(𝐶𝑎 + 𝐶𝑚+ 𝐶𝛽)
𝑛
𝛼𝑙
→    +   

𝜆0
→    + 

𝜆𝑙
→

𝜆0
⇒ 
𝜆0
𝜆𝑙

   + 

𝑛
𝛼𝑙𝑙
  ⇒      
𝜆𝑙
𝜆0

+ 

𝜆0
𝜆
 
𝑙
 ⇒ 

𝑛
𝛼𝑙𝑙𝑙
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Its definition is very simple: take a 

segment of a certain length (for example, the 

interval [M1; M4] of the real line) and divide it 

into three sub-segments of equal length, remove 

the central segment and repeat the process with 

the two new segments. 
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HR =  
(𝐶𝑎 + 𝐶𝑚+ 𝐶𝛽)
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 ⇒ 
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We determine the Brownian diffusion: 

 

 
Structural equations: 

 

Short-term: RC =   [(π+T.C.)/(1/2)] 

 

M1 = [
𝑀 + 𝜋
1

2

]

3/4

 

 

Long-term: RL =  [(π-T.C.+〖(π)〗
^2)/(1/2+1)] 

 

M2 = [
𝑀1 + 𝑀2
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1

2
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M3 = [
𝑀1 + 𝑀2 + 𝑀3

𝜋 + 
1

2
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Medium-term: RM = [(π + T.C.)/(1/2- 

1)]^2 

 

M4 = [
(𝑀1+𝑀2)1/2

(𝑀3+𝑀4)3/4
]
𝜋

 

 

We determine the diffusion with inelastic 

plot for the entire 1  

 
 However, the set is small when its length 

is considered: the initial interval [0,1] measures 

1, and at each step, one third is taken away, 

which makes its length multiply by 2/3 and in the 

geometric sequence a = (2/3)n tends towards 

zero.  
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Integral with fractional numbers. 
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Integral with entire numbers. 
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Integral with entire number and 

fractional numbers 

 
We determine the fractal iteration: 
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∫[
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1/2

+ ∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+ ∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+ 

 

∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+ ∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+ ∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+ 

 

 

∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+ ∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+ ∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+ 

 

 

∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+∫[

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

+ ∫ [

𝑑 (2.47)

𝑑 (2.47)

𝑥
]

1/2

 

 

We determine the diffusion with 

increasing plot for all =1 

 

 
 

We adjust the value of each equivalent 

iterated dimension: 

 
(
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.42

2.47
)

1
2

+ (
2.40

2.47
)

1
2

+ (
2.38

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ 

 

(
2.40

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.48

2.48
)

1
2

+ (
2.47

2.48
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ 

 

(
2.40

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ 

 

(
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

+ (
2.47

2.47
)

1
2

= 

 

We determine the diffusion with decreasing plot 

for all 1 
 

 
Finally, we represent the diffusion with 

constant plot = 0 
 

  
 

Conclusions 

 

The more times the formula is iterated, the larger 

the complex number should become, but this is 

not always the case. The parameter that 

determines its growth is the modulus of the 

complex. If the modulus (which is not 

imaginary, but real) is 2 or greater, it is proven 

that it will continue to grow infinitely. However, 

there are complexes that, no matter how much 

we square them, will never give us a complex 

number whose modulus is greater than 2. 

 

Under this new form of analysis, initially 

described by Hausdorff, it is possible to calculate 

the dimension of those "monstrous structures", 

for example, the number of parts can be 

expressed as a function of the scale factor 

according to the law a = sD.  

𝐷𝑃𝑐𝑟 =
[
1
2] ∙ [

3
4]

𝜋 − 𝑙𝑖𝑚
 

𝑙𝐼(𝐷𝑃𝑐𝑟) = [
𝜕
1
2

𝜕
3
4

] ∙ [
𝑙𝑜𝑔𝜋

𝑙𝑛
1
𝑙𝑖𝑚

] 

𝐷𝑃𝑑 = [
1

2
] ∙ [
𝜋

1
3

]

𝑙𝑖𝑚4

 

𝑙𝐼(𝐷𝑃𝑑) = [
𝜕 [
1
2]

𝜕 [
1
3]
] ∙ [

𝑑𝜋

𝑑 [
1
3]
] ∙ [
𝑙𝑖𝑚

4
] 

 

𝐷𝑃𝑐𝑐 = [
1

2
] − 𝑙𝑖𝑚 [

3

4
]
𝜋

 

𝑙𝐼(𝐷𝑃𝑐𝑐) = {
𝜕 [
1
2]

𝜕 [
3
4]
} ∙ [

𝑙𝑜𝑔3

𝑙𝑛4
]
𝑙𝑖𝑚𝜋
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By subtracting D we obtain: D = log a / 

log s. It can be seen that, for example, the Koch 

curve can be constructed by putting together four 

equal portions, the total curve being three times 

larger than each of the individual parts.  

 

Thus, it is seen that some mathematical 

objects and probably many natural objects often 

lie in a non-integer dimension in space, i.e. their 

dimension is one decimal number larger than the 

topological dimension of origin (integer) of the 

same. 
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