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Abstract 
 
In this paper we discuss the asymptotically almost efficient estimation of a univariate static 
cointegrating regression relationship when we take into account the deterministic structure of 
the integrated regressors, in a slightly more general framework that considered by Hansen 
(1992). After reviewing the properties of OLS and Fully Modified OLS (FM-OLS) estimation 
in this framework, we consider the analysis of the recently proposed Integrated Modified OLS 
(IM-OLS) estimator by Vogelsang and Wagner (2011) of the cointegrating vector and propose a 
new proper specification of the integrated modified cointegrating regression equation. This 
alternative method of bias removal has the advantage over the existing methods that does not 
require any tuning parameters, such as kernel functions and bandwidths, or lags. Also, based on 
the sequence of IM-OLS residuals, we propose some new test statistics based on different 
measures of excessive fluctuation for testing the null hypothesis of cointegration against the 
alternative of no cointegration. For these test statistics we derive their asymptotic null and 
alternative distributions, provide the relevant quantiles of the null distribution, and study their 
finite sample power performance under no cointegration through a simulation experiment. 
 
Keywords: cointegration, asymptotically efficient estimation, OLS, FM-OLS, IM-OLS, 
trending integrated regressors 
 
2 Introduction 
 
Cointegration analysis is widely used in empirical macroeconomics and finance, and includes 
both the estimation of cointegrating relationships and hypothesis testing, and also testing the 
hypothesis of cointegration among nonstationary variables. In the econometric literature there 
are many contributions in these two topics, some of which deals with these two questions 
simultaneously. Given the usual linear specification of a potentially cointegrating regression, a 
first candidate for estimation is the method of ordinary least squares (OLS), that determines 
superconsistent estimates of the regression parameters under cointegration. However, with 
endogenous regressors the limiting distribution of the OLS estimator is contaminated by a 
number of nuisance parameters, also known as second order bias terms, which renders inference 
problematic. Consequently, there has been proposed several modifications to OLS to makes 
standard asymptotic inference feasible but at the cost of introducing the choice of several tuning 
parameters and functions. These methods include the fully modified OLS (FM-OLS) approach 
of Phillips and Hansen (1990), the canonical cointegrating regression (CCR) by Park (1992), 
and the dynamic OLS (DOLS) approach of Phillips and Loretan (1991), Saikkonen (1991) and 
Stock and Watson (1993). This paper deals with the analysis of a new asymptotically almost 
efficient estimation method of a linear cointegrating regression recently proposed by Vogelsang 
and Wagner (2011) (henceforth VW) that does not require any additional choice more than the 
initial standard assumptions on the model specification, making it a very appealing alternative. 
 

This new estimation method, called the integrated modified OLS (IM-OLS) estimator, 
only requires a very simple transformation, which is free of tuning parameters or any other 
previous computation, of the model variables that asymptotically produces the same correction 
effect as the commonly used estimation methods cited above. This simplicity open the 
possibility to a more straightforward treatment of more complex models incorporating some 
additional effects and components.  
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Despite these advantages, the main criticism comes from the fact that, asymptotically, 
this estimation method does not produce fully efficient estimates as compared with the other 
existing methods. However, simulation results obtained by the authors seems to indicate that, 
even in very small samples, the efficiency loss is not severe and hence the estimation results are 
reliable enough. 

 
An important issue, which is often is not taken into account and that can substantially 

affect the performance and properties of these estimation procedures, is the nature and structure 
of the deterministic component, if any, of the generating mechanism of the model variables and 
its relation with the deterministic component, if is considered, in the specification of the 
cointegrating regression. Following the work by Hansen (1992), we generalize its formulation 
by allowing for deterministically trending integrated regressors with a possibly different 
structure for their deterministic components and propose a simple rule for a proper specification 
of the deterministic trend function in the cointegrating regression that simultaneously correct for 
their effects. 

 
Given the particular transformation of the model variables required for performing the 

asymptotically efficient IM-OLS estimation, we show that a proper accommodation of these 
components must be based on a previous transformation of the model variables, in particular the 
OLS detrending. With these corrected observations we perform the IM-OLS estimation of the 
cointegrating regression and derive the limiting distributions of the resulting estimates and 
residuals both under the assumption of cointegration and no cointegration. 

 
Based on these new asymptotically efficient estimators of the vector parameters in the 

cointegrating regression, we consider the building of some simple statistics for testing the null 
hypothesis of cointegration by using different measures of excessive fluctuation in the IM-OLS 
residual sequence that cannot be compatible with the stationarity assumption of the error 
sequence. These new testing procedures are based on the statistics proposed by Shin (1994), 
Xiao and Phillips (2002) and Wu and Xiao (2008) with the same objective as ours, and make 
use of two basic measures of excessive fluctuations, the Cramér-von Mises (CvM) and 
Kolmogorov-Smirnov (KS) metrics. We derive their limiting null and alternative distributions 
and evaluate their power behavior in finite-samples through a simulation experiment. 

 
The structure of the paper is as follows.  
 
In Section 2.1 we formalize the specification of the data generating process and the 

econometric model relating the variables, a linear static cointegrating regression, together with 
the set of assumptions needed to obtain the more relevant distributional results of the usual 
estimators of the model parameters and residuals. We review the estimation results from some 
commonly existing estimation methods in this setup, as well as the specification of a set of 
related semiparametric statistics that we use as a reference for later development of new testing 
procedures for the null hypothesis of cointegration in Section 4 based on the results of the new 
estimation method that we analyze.  

 
This section also introduce a very simple to compute testing procedure based on OLS 

residuals for testing the null hypothesis of no cointegration that generalize a previous one in the 
univariate analysis of an individual time series.  
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Section 3 reviews the main characteristics and introduce some new results for the new 
recently proposed estimation method for an univariate cointegrating regression equation model 
by Vogelsang and Wagner (2011), which is called the IM-OLS estimator. As for the existing 
estimation methods reviewed in Section 2.1, we analyze the more appropriate treatment of the 
underlying deterministic component characterizing the observations of the integrated regressors 
and also obtain new asymptotic results concerning the behavior of the estimates under the 
assumption of no cointegration. With these results, Section 4 propose a new set of 
semiparametric statistics for testing the null hypothesis of cointegration based on the behavior 
of some simple functionals of the IM-OLS residuals and characterize their limiting distributions, 
both under cointegration and no cointegration. Finally, all the mathematical proofs are collected 
in Appendix A while that Appendix B presents some numerical results, including critical values 
for the proposed testing procedures and the illustration of their behavior through its power 
performance in finite samples. 
 
2.1 The model, OLS and FM-OLS estimation of the linear cointegrating regression with 
trending regressors 
 
We assume that the variables of interest, the scalar tY  and the k-dimensional vector 

k,t 1,t k,t= (X ,...,X )X c , come from the following data generating process (DGP) 

0,0, ,
,

, ,, ,
1,...,tp p tt

p p t t
k t k tk p p t

Y
t nA

X A

D W
W KKW

         (2.1) 

 
Where t 0,t k,t= (η ,η )η  is the stochastic trend component that satisfy the first order 

recurrence relation t t-1 t= +η η ε  
 
With t 0,t k,t= (ε , )ε ε  a k+1 vector zero mean sequence of error processes. Also, we 

consider the general case where both Yt and each element of the k vector k,t 1,t k,t= (X ,...,X )X c  
contains a deterministic trend component given by a polynomial trend function of an arbitrary 
order pi t 0, i =   0,   1,   …,   k, that is , , ,i ii t i p p td D W , with , ,0 ,1 ,( , ,..., )

i ii p i i i pα α α α , and 

, (1, ,..., )i
i

p
p t t tW . To make this assumption compatible with the standard formulation in (2.1) 

where all the deterministic trend components appears as if it were of the same type and order, 
we have to write. 

,
, , , , ,

,
( : ) i

i i i i
i

p t
i p p t i p p p i p p t

p p t
0

W
D W D D WW ,     i =  0,  1,  …,  k        (2.2) 

With p = max(p0, p1, ..., pk) and 
ip p0  a (p�pi)u1 vector of zeroes, so that. 

1 11, , 1,

, , ,

, , ,k k

p p t p

k p p t p t

k p p t k p

A
D W D

W W
D W D

                                   (2.3) 

 
With this formulation, we introduce the static potentially cointegrating regression 

equation between the unobserved stochastic trend components of the elements in Zt as 
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0, ,t k t k tuK E                      (2.4) 
 

Which gives 
 

, , 1,...,t p p t k k t tY u t nXD W E            (2.5) 

 
With 0, ,p p k p kAD D E . Associated to the deterministic component we introduce the 

polynomial order trend and sample size dependent scaling matrix ,p n* , given by 
1

, (1, ,..., )pp n diag n n* , which gives , , , ( ) (1, ,..., )pp tn p n p t p r r rW * W W  uniformly over 

r � [0,1] as nof. Also we have that 1 [ ]
1 , 0 ( )nr r

t p tn pn s dsW W , and 
1 1

1 , , , ,
n
t p tn p tn pp n pp n ppn nW W Q Q Q  as nof, with ppQ  be defined as 

1
0 ( ) ( )pp p ps s dsQ W W ,. In order to complete the specification of our data generating 

process we next introduce a quite general and common assumption on the error terms involved 
in (2.5). 

 
Assumption 2.1.1  
 
We assume that the error term in the cointegrating regression tu  satisfy the first-order 

recurrence relation 1t t tu u , with |D| d 1, where the zero mean (k+1)-dimensional error 

sequence ,( , )t t k t] H  verify any of the existing conditions that guarantee the validity of the 
functional central limit theorem (FCLT) approximation of the form 
 

[ ]
, 1/2 1/2

0 0
,, 1

( ) ( )
( ) ( ) ( ) 0 1( ) ( )

nr
n t

k tk n kt

B r B rn r r rr rB BM WB B : :H                 (2.6) 

 
With ( ) ( ( ), ( ))kr W r rW W  a k+1-dimensional standard Brownian motion, and : 0 

the covariance matrix of B(r), which is assumed to be positive definite and that can also be 
interpreted as the long-run covariance matrix of the vector error sequence t] , that is 

0 1[ ] ( [ ] [ ])t t j t j t t t jE E E: ] ] ] ] ] ] , which can be decomposed as 0 0 0: ' / , 

with 0 0 0 0 [ ]j t j tE' 6 / ] ]  the one-sided long-run covariance matrix, where 

0 [ ]t tE6 ] ] , and 0 1 [ ]j t j tE/ ] ] . This covariance matrix is partitioned according to the 

components of t]  as 2 , k kZ Z , and kk: . The assumption of positive definiteness of :0 

excludes cointegration among the k integrated regressors ,k tX  (subcointegration) with 

,( ) ( )k k krB BM : , , 0k k: . Given the upper triangular Cholesky decomposition of the 

matrix :0, we then have that .( ) ( ) ( )k k kB r B r rBJ , with . .( ) ( )k kB r W r , and 
1/2
,( ) ( )k k k kr rB W: , where 1

, ,k k k kJ : Z  and 
2 2 2 1

. . . , , ,[ ( ) ] [ ( ) ( )]k k k k k k kE B r E B r B r Z : Z  is the conditional variance of ( )B r  

given ( )k rB , which gives .[ ( ) ( )]k k kE r B rB 0 . 
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For the initial values ,0kK  and 0u , we introduce the very general conditions 

1/2
,0 ( )k po nK , and 1/2

0 ( )pu o n , which include the particular case of constant finite values. 

In the case of a stationary error term tu , with |D| < 1, we then have that 
1/2 [ ] 1

1 ( ) (1 ) ( )nr
t t un u B r B r , with .( ) ( ) ( )u u k k kB r B r rBJ , 1

k kk kuJ : Z , 
2 2 2 2[ ( ) ] (1 )u uE B r , 2 2 2 2 2

. . .[ ( ) ] (1 )u k u k u k kk k kE B r J : J , and 

[ ( ) ( )]k uE r B rB 1(1 )ku kZ Z , while that in the case of nonstationarity, that is when D = 

1, then 1/2
[ ] ( ) ( )nr un u B r B r , with 2 2

u . This means that, from the initial condition on 

,( , )t t k t] H , we have that under stationary error terms ut the sequence ,( , )t t k tu[ H  also 

satisfy a multivariate invariance principle with a long-run covariance matrix :  given by the 
components 2

u , ku ukZ Z , and kk: . Particular attention must be paid to the long-run 

covariance vector between ,k tH  and ut, kuZ , given that it controls for the endogeneity of the 
integrated regressors in the cointegrating regression model.  

 
With these results then we have: 

[ ]
(1 ) (1 )

[ ]
01

( ) 1/2
( )

( ) 1/2

nr
uv v

nr t u r
ut

B r v
n U n u J r

B s ds v
        (2.7) 

 
With v =1/2 and v = �1/2 indicating, respectively, the stationary and nonstationary 

cases.  
This formulation forms the base for obtaining standard limiting distributional results for 

the estimators of model parameters and residuals both under cointegration and no cointegration. 
However, there are some other useful formulations that allow for a more general and unified 
treatment of the different behavior of this scaled partial sum process of the error correction 
terms tu  under these two situations. One can cite, for example, the local-to-unity approach 

introduced by Phillips (1987) that considers the situation where the autoregressive parameter D 
depends on the sample size as 11n n , with O d 0, where O < 0 corresponds to the 
stationarity case (that is, cointegration), while that O = 0 corresponds to the nonstationary case 
(that is, no cointegration) irrespective to the sample size. Taking into account that we can write 

2exp( / ) ( )n n O n  for small values of O, then we have that: 
[ ]

1/2 [ ] / 1/2 ([ ] ) /
, [ ] 0

1

( ) ( / ) (1) ( )
nr

nr n nr t n
n nr t p

t

J r n u u n e n e o J r                      (2.8) 

 
Under the above assumption on the initial value 0u , where the weak limit ( )J r  in the 

near-integration case is given by the Gaussian process ( )
0( ) ( )r r sJ r e dB s

( )
0( ) ( )r r sB r e B s ds  that is called an Ornstein-Uhlenbeck process which, for fixed r > 0, 

has the distribution 2( ) (0,( 1)/2 )d rJ r N e .  
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An alternative, and more recent, formulation has been proposed by Jansson (2005a, b), 
in the context of developing a point optimal cointegration test and also incorporating a local-to-
unity representation, which is given by (1 )t tu L , where 11n n , with O t 

0. In this framework, the value O = 0 corresponds to the case of stationarity, while that O > 0 
corresponds to no cointegration, as can be checked when writting 

0 0 1( / )[(1/ ) ]t
t t i iu u n n , which gives. 

 
[ ] [ ]

1/2 1/2[ ]
[ ] 0 0

1 1 1

( ) (1/ ) (1/ )
nr nr t

nr
nr t in

t t i

n U u n n n                      (2.9) 

 

With weak limit 1/2
[ ] 0( ) ( )r
nrn U B r B s ds , only when the initial values 0u  and 

0  are both of order 1/2( )po n . These two cases provide very different stochastic limits but both 

determine the same orders of convergence for the estimates of the model parameters pD  and 

kE  (as will be seen later), given by the ones corresponding to the case of no cointegration in the 
standard framework.12 

 
Once discussed all these questions concerning the different representations and 

stochastic properties of the correction error term tu  in the cointegrating regression model, in 
what follows we will retain the most standard formulation introduced in (2.7) to address the 
central issue of this study which is the study of the properties and behavior of some alternative 
and commonly used estimation methods and test statistics and of the new estimation method 
considered in Section 2.. 

 
Given the specification of the linear static cointegrating regression equation (2.5), the 

standard approach is to use Ordinary Least Squares (OLS) method to estimate the vector 
parameters pD  and kE , which gives: 

1
, , ,

, ,
, ,1 1,

ˆ
( , )ˆ

n n
p n p p t p t

p t k t t
k t k tt tk n k

uXX X
D D W W

W
E E

                                                       (2.10) 

 
Taking into account the structure for the deterministic and stochastic trend components 

of the observed processes tY  and ,k tX  in (2.1), we can write: 
1

,, ,, ,
1/21

, ,,, , , ,

p tnp n p tnp t p tn
n n

k t k tnk tk p p n p tn k t n
W WX A

W* WW W
KK* W K

      (2.11) 

 
With weighting matrix Wn given by 

                                                           
12 For a recent study on the asymptotic and finite-sample properties and behavior of some commonly used 
estimation methods in the presence of highly persistent regression errors (or, equivalently, strongly 
serially correlated error terms) see, for example, Kurozumi and Hayakawa (2009). This paper makes use 
of a related but different approach to the above considered n local-to-unity system, the so called m local-
to-unity system, which seems more appropriate when focus on the cointegrating relation. Also, for a 
recent study of the asymptotic and finite-sample properties of a variety of estimation methods for a single 
cointegrating regression model making use of a modified version of the n local-to-unity approach and the 
one proposed by Jansson (2005a, b), see Afonso-Rodríguez (2013). 
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1
, 1,

1
, , ,

p n p k
n

k p p n k kn
0

W
A I
*
*

         (2.12) 

 
Which allows the reweighted regressors 1/2

, ,( , )p tn k tnnW K  to converge weakly to a full-

ranked process, so that the OLS estimation error of Dp and Ek can be written as 
1

, ,1 1/2
1/2 , ,

,1,

,(1 )
1/2

,1

ˆ
( ) (1/ ) ( , )ˆ

n
p n p p tnv

n p tn k t
k ttk n k

n
p tnv

t
k tt

n n n
n

n u
n

W
D D W

W K
KE E

W
K

      (2.13) 

With the power v taking values r1/2 depending on the stochastic properties of the error 
sequence tu , and determining the order of consistency of the OLS estimates. From this 

expression we have that  can be written as: 

1
, , , , ,

1/2
, ,

1
, ,1/2 (1 )

1/2 1/2, ,
, ,1

ˆˆ ˆ( ) [( ) ( )]ˆ ( ) ˆ ˆ( ) ( )

(1/ ) ( , )

v
p n p n p n p k p k n k

n v
k n k n k

n
p tn p tnv

p tn k t
k t k tt

v n
v

v n

n n n
n n

A4 * D D E E
4

4 E E

W W
W K

K K1

n

t
t

u

  (2.14) 

 
 
The usual result in this context is as in (2.14) but with , , 1k p k pA 0 , that corresponds 

to the case where the integrated regressors have no deterministic component which, in our 
formulation, implies that the deterministic term appearing in the cointegrating equation must 
correspond to the one contained in Yt.  

 
The first relevant question concerning the effect of explicitly considering the structure 

of the deterministic components underlying the observations of the integrated regressors is that, 
in general terms, the OLS estimator of the trend parameters in the cointegrating regression 
model contains is biased in finite samples and is asymptotically unbiased only when p = 0, that 
is, when all the integrated regressors only contain at most a constant term. To see this, the first 
term in (2.14) can be written as 

1
, , , ,

1 1 1/2
, , , , , ,

1 1

1 (1 ) 1 1/2
, , , , , ,

1 1

ˆˆ[( ) ( )]

ˆ( )[ ( )]

ˆ(1/ ) ( ) ( )

p n p n p k p k n k
n n

pp n p tn t pp n p tn k t k n k
t t

n n
v v

pp n p tn t pp n p tn k t k n
t t

u n n

n n u n n v

A

Q Q

Q Q

* D D E E

W W K E E

W W K 4

    (2.15)

 
 
Where 1/2

, ,
ˆˆ ( ) ( )v

k n k n kv n4 E E  indicates the scaled OLS estimator of the 

cointegrating vector. This gives that the scaled OLS estimator of Dp can be written as 

, ,
ˆˆ[( ) , ( ) ]v

n p n p k n kn c c c c� �W D D E E
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1 1/2 1
, , , , ,

1 (1 ) 1 1/2
, , , , , ,

1 1

ˆˆ( ) ( )

ˆ(1/ ) ( ) ( )

v
p n p n p p n k p k n

n n
v

pp n p tn t pp n p tn k t k n
t t

n n v

n u n n v

A

Q Q

* D D * 4

W W K 4
     (2.16) 

 
Where 1/2 1 1/2

, (1/ , ,..., )p
p nn diag n n n* , so that the first term contains the bias 

caused by the trend parameters in , 1, ,( ,..., )k p p k pA D D , while that the estimate of Ek is exactly 

invariant to the presence of deterministic trends in the regressors, i.e., to the values of ,k pA . 

Hansen (1992) has considered a similar situation, but assuming that 0,t tY  with 

0 00, 0, , 0t p p td D W , and pi = m, i = 1, ..., k, with 1 2
, ( , ,..., )mp p p

m t t t tW ,1 d p1 <...< pm, and 

scaling matrix 1 2
, ( , ,..., )mp p p

m n diag n n n*  (see Theorem 1(a, b), p.93).13 The main 
differences with our approach are the no inclusion of a constant term and the inclusion of a rank 
condition on the coefficient matrix ,k mA , particularly, rank( ,k mA ) = m d k. Then, from (2.1) 

we have that 
 

1

1 1 1/2
, , , , ,[ ] ,[ ] , , , , ,[ ]

( 1/2)
,[ ]

[( ) ] [( ) ]( )
( ) ( )

m n k m k m k m k nr m nr n m n k m k m k m k nr
p

m nr n p m

n n
O n r

A A A X A A A* W * K
W W

         (2.17) 

 
Which allows the possibility to develop a sequence of weights which yield a 

nondegenerate design limiting matrix when estimating (2.3) by OLS under the restriction 

m m0D . However, as can see from the previous result, this only yields consistent results when 
p1 t 1, and there is no constant term in the regression neither in the polynomial trend function.14 
Under the assumption of cointegration (v = 1/2), then the limiting distribution of the last term in 
(2.6) is given by 

 
[ ]

, 1(1 )
1/2

,,1 0

1
.

,0 0

( )
( )

( )

( ) ( )
( ) ( )

( ) ( )

rnr
p tn pv p

t u
k ukk tt

r r
pp p

u k k k
k uk k

s
n u dB s rsn

s s
dB s d s rs s

0
B

0
BB B

W W
'K

W W
J

'

    (2.18) 

 
With , 0 ,[ ]k u j k t j tE u' H  given by the probability limit of 

                                                           
13 In the context of evaluating the effects of detrending in the estimation of a cointegrating regresión, it is 
also worth to mention the work by Xiao and Phillips (1999), where the authors compare the results of 
OLS detrending and detrending after quasi-differencing when the variables in a multivariate cointegrated 
VAR model contain a deterministic trend function. However, given the differences between our 
framework of analysis and the one used in this paper, we are not going to make use of their results. 
14 See also Hassler (2001) for a related study in the case where the specification of the cointegrating 
regression equation does not include any deterministic term but the integrated regressors Xk,t do contain a 
constant term. 
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1
, 1 ,[ ]n

n ku t k t tn E u' K .15This limiting distribution contains the second-order bias due to the 

correlation, both contemporaneous and over time, between the error term tu  and ,k tH  
(endogeneity of the stochastic trend components of the regressors), and the non-centrality bias 
that comes from the fact that the regression errors are serially correlated through the parameter 

,k u' . This second-order bias determine a miscentering, an asymmetry, and a nonscale nuisance 

parameter dependency to the limit distribution of ,
ˆ
k nE . For the first term above we have that 

1 1/2 1
0 . . 0 .( ) ( ) ( ) ( )k u k u k kk k u ks dB s s dW sB W:  where, given the independence between ( )k rB  

and . ( )u kB r , conditioning on ( )k rB  (or ( )k rW ) can be used to show that this term is a zero 
mean Gaussian mixture of the form 

,

11 1
1

. , , ,
0 0 0

( ) ( ) ( , ) ( ), ( ) ( )
k k

k u k k k k k k k k k ks dW s N dP s s
G

W 0 G G G W W          (2.19) 

 
The second term in the expression between brackets is a matrix unit root distribution, 

arising from the k stochastic trends in ,k tX , which is cancelled under strict exogeneity of the 

regressors, that is when ku k0Z . Finally, from the decomposition of ,k tX  in (2.1) and the 
results in (2.14) and (2.15), the sequence of OLS residuals given by 

, , , , ,
1 1/2

, , , , , , ,

ˆˆ ˆ( ) ( ) ( )
ˆ ˆˆ( [( ) ( )]) ( )[ ( )]

t p t p t p n p k t k n k

t p tn p n p n p k p k n k k t k n k

u k u
u n n

X
A

W D D E E

W * D D E E K E E
        (2.20) 

That can also be written as 

1
, , , ,

1

1/2 1
, , , , , ,

1

(1/2 ) 1/2
, , ,

ˆ ( )

ˆ[ ( )]

ˆ[ ( )]

n

t p t p tn pp n p jn j
j

n

k t p tn pp n p jn k j k n k
j

v v
t p kt p k n k

u k u u

n n

u n n

Q

Q

W W

K W W K E E

K E E

      (2.21) 

 
So that the OLS residuals are exactly invariant to the trend parameters, and are 

decomposed in terms of the detrended versions of tu  and ,k tK  as defined in (2.8). For later use, 
we define the partial sum of the detrended errors in the cointegrating regression (2.3) as 

, 1 ,
t

t p j j pU u , with: 
[ ] [ ] [ ]

(1 ) (1 ) (1 ) 1 1 (1 )
[ ], , , , ,

1 1 1 1

nr nr nr n
v v v v

nr p t p t p tn n pp p tn t
t t t t

n U n u n u n n uQW W      (2.22) 

Where, asymptotically, we get 

,(1 )
[ ], ,

0 ,

( ) 1/2 (| | 1)
( )

( ) 1/2 ( 1)
u pv

nr p u p r
u p

V r v
n U J r

B s ds v
      (2.23) 

 
With , ( )u pV r  a generalized (p+1)th-level Brownian bridge process given by 

                                                           
15 The result ,k ur'  is obtained by writing 1 1

1 1
[ ] [ ] [ ]

, , ,( ) [ ] ([ ]) [ ]nr nr nr
n ku t k t t t k t tnr n E u nr E u� �

   ¦  ¦' K K , so that 
1 1 1

1 0 0 1
[ ] [ ] [ ] [ ]

, , ,( ) [([ ]) [ ] (([ ]) [ ])]nr nr nr nr
n ku t k t j t j k t j tnr nr E u nr E u� � �

   � � ¦ �¦ ¦' K H and the use of the initial condition Kk,0, 
and Assumption 2.1 on the properties of the error terms. 
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1
1

,
0 0

( ) ( ) ( ) ( ) ( )
r

u p u p pp p uV r B r s ds s dB sQW W         (2.24) 

With variance 2 2
,[ ( ) ] · ( )u p u pE V r b r , where 1

0 0( ) ( ) ( )r r
p p pp pb r r s ds s dsQW W , and 

, ( )u pB r  a (p+1)th-order detrended Brownian motion process defined as 

 
1

1
,

0
( ) ( ) ( ) ( ) ( )u p u p pp p uB r B r r s B s dsQW W         (2.25) 

 
As the stochastic limits in (2.9).16 Finally, making use of (2.24), and the relation 

.( ) ( ) ( )u u k k kB r B r rBJ  we then have that , ( )u pV r  can be decomposed as 
1

1
, . .

0 0
1

1
. , ,

0 0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

r

u p u k p pp p u k

r

k k k p pp p u k p k k p

V r B r s ds s dB s

r d s s s ds V r r

Q

B B Q V

W W

J W W J
    (2.26) 

 
Where, by construction, it is verified , . , , . ,[ ( ) ( )] [ ( ) ( )]k p u k p k p u k p kE r V r E r V rV B 0 , with 

, ( )k p rB  defined in (2.14) below, and 2
. , .[ ( )] · ( )u k p u k pVar V r b r . 

 
In order to complete this analysis and to establish the basis for our proposal in the next 

section, we consider an alternative specification to the cointegrating regression equation (2.3). 
By applying the partitioned OLS estimation to the regression equation (2.5) with respect to the 
trend parameters, we have that this model can also be written as 

 

, , ,
ˆˆ , 1,...,t p k kt p t pY u t nXE         (2.27) 

 

Where 1
, , , 1 ,

ˆ n
t p t p tn pp n j p jn jY Y YQW W , 1

, , 1 , , , ,
ˆ n
kt p k t j k j p jn pp n p tnX X X QW W , and 

,t p tu u  1
, , 1 ,

n
p tn pp n j p jn juQW W  denote the detrended observations of the model variables 

obtained by OLS fitting of their original observations to a pth-order polynomial trend function, 
where p is chosen according to the rule p t max(p0, p1, ..., pk) in the case where the polynomial 
trend functions in tY  and each component of ,k tX  differ in their orders. The next Proposition 
2.1 determines the effectiveness of this procedure to make the OLS-based estimation results 
invariant to the trend parameters in (2.1). 

 
 

Proposition 2.1. Given (2.1)-(2.2), when considering the OLS detrending of tY  and ,k tX  
                                                           
16 Explicit expressions for these two limiting processes, , ( )u pV r  and , ( )u pB r , can be obtained in the leading 
cases of p = 0 (constant), and p = 1 (constant and linear trend). Specifically, we have that 

0 1, ( ) ( ) ( )u u uV r B r rB � , and 1
1 02 3 1 6 1, ( ) ( ) ( ) ( ) ( ) ( )u u u uV r B r r rB r r B s ds � � � � ³  for the first and second-level 

Brownian bridge, while that 1
0 0, ( ) ( ) ( )u u uB r B r B s ds � ³ , and 1

1 02 3 2, ( ) ( ) ( ) ( )u u uB r B r r B s ds � � ³  
1
02 6 3( ) ( )ur sB s ds� � ³  are the particular expressions for the demeaned and demeaned and detrended 

Brownian processes, respectively. 
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by fitting a polynomial trend function of order p = max(p0, p1, ..., pk) to each of these variables, 
then we have that 

 
1

, 0 , 0, , , 1 , 0,
ˆ n
t p t p t p tn pp n j p jn jY QW W            (2.28) 

 
And 
 

1
, , , 1 , , , , 1 , ,

ˆ ( ,..., )n
kt p kt p k t j k j p jn pp n p tn t p kt pX QK K K W W                           (2.29) 

 
Where 0 ,t p  and ,kt pK  are generalized detrended transformations of 0,t  and ,k tK , with 

 
1

1/2 1
[ ], ,

0
( ) ( ) ( ) ( ) ( )k nr p k p k k p pp pn r r s s ds rB B B QK W W                  (2.30) 

 
a (p+1)-order detrended transformation of ( )k rB . According to Lemma A.2 in Phillips 

and Hansen (1990), , ,( ) ( · ( ))k p k k pr v rB BM :  is a full rank Gaussian processes, with ( )pv r  a 

scalar function of r and (·)pW . 

 
Proof. See Appendix A.1. 
 
By OLS estimation of the cointegrating vector component kE  in (2.13) we have that 

1
(1/2 )

, , , , ,
1 1

1
1/2 1/2 (1 ) 1/2

, , , ,
1 1

ˆ ˆ ˆ ˆ( )

(1/ ) ( )( ) ( )

n n
v

k n k kt p kt p kt p t p
t t

n n
v

kt p kt p kt p t p
t t

n u

n n n n n u

X X XE E

K K K

    (2.31) 

Given that 1 (1 )
, , , 1 ,

v v n
t p t p tn pp n j p jn ju u n n uQW W , then under cointegration (with v 

= 1/2) we have that 1/2
1 , (1)n

j p jn j pn u OW , and thus 1/2
, ( )t p t pu u O n , so that this 

expression gives the same limiting result as before. This last expression allows to obtain the 
limiting distribution of the OLS estimator of Ek under no cointegration. In this case, making use 
of the result in (2.9) for v = �1/2 when D = 1, we get the following 
 

11 1

, , , , ,
0 0

ˆ ( ) ( ) ( ) ( )k n k k p k p k p u ps s ds s dJ sB B BE E       (2.32) 

 
Where , ,( ) ( )u p u pdJ r B r dr .  

 
The OLS residuals in (2.8) can be used as the basis for building some simple statistics 

for testing the null hypothesis of cointegration against the alternative of no cointegration, given 
that ,ˆ ( ) (1)t p pu k O  when v = 1/2, and 1/2

,ˆ ( ) ( )t p pu k O n  when v = �1/2.  

 
This difference in behavior under the null and the alternative can be exploited by 
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searching for excessive fluctuations in the sequence of scaled partial sum of residuals 
1/2 [ ] 1/2

[ ], 1 , [ ],
ˆ ˆˆ( ) ( ) ( )nr
nr p t t p nr pB k n u k n U k  through several global measures, such as a 

Cramér-von Mises (CvM) measure of fluctuation as in Shin (1994), or a Kolmogorov-Smirnov 
(KS) measure as in Xiao (1999), Xiao and Phillips (2002), and Wu and Xiao (2008).17 From 
(2.8), the scaled partial sum of OLS residuals is given by 

 
[ ]

(1 ) 1/2 (1 ) 1/2
[ ], [ ], [ ], , ,

1

ˆˆ ˆ( ) ( ) (1/ ) ( ) ( )
nr

v v v
nr p nr p nr p kt p k n

t

n U k n B k n U n n vK 4   (2.33) 

 
Where 1/2

[ ], [ ],
ˆ ˆ( ) ( )nr p nr pB k n U k  under cointegration with v = 1/2. Given that, apart of 

the asymptotic behavior of (1 )
[ ],

v
nr pn U  stated in (2.9)-(2.11), the limit distribution of 

(1 )
[ ],
ˆ ( )v
nr pn U k  is mainly determined by that of 1/2

, ,
ˆ ˆ( ) ( )v
k n k n kv n E E , revealing its 

dependence on the same nuisance parameters that before. Thus, under cointegration we get 
 

1 1

[ ], , , , , , ,
0 0 0

ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )
r r

nr p u p k p k p k p k p u p kuB k V r s ds s s ds s dV sB B B B '     (2.34) 

 
Which can also be written as 
 

[ ], ,
ˆ ( ) ( )nr p u uk pB k w r           (2.35) 

 
With 

11 1
1/2

, , , , , , ,
0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
r

uk p u p k p k p k p k p u p kk kuw r w r s ds s s ds s dw sW W W W : '      (2.36) 

 
Where ,[ ( )] ( )u p pVar w r b r , and , with bp(r) and vp(r) 

defined above. In any case, this limit null distribution depends on 2
u , p and k, and only in the 

case of strictly exogeneous regressors and serially uncorrelated error correction terms in the 
cointegrating equation it is free of any remaining nuisance parameter. Thus, the main difficulty 
comes from the dependency on kk:  and ku'  that cannot be removed trough a scaling 

transformation. On the other hand, under no cointegration, we have that [ ],
ˆ ( ) ( )nr p pB k O n , 

which determines that 
 

3/2 1
[ ], [ ],

11 1

, , , , , ,
0 0 0

ˆ ˆ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

nr p nr p

r

u p k p k p k p k p u p

n U k n B k

J r s ds s s ds s B s dsB B B B
          (2.37) 

                                                           
17 The test statistic proposed by Shin (1994) is the generalization of the KPSS statistic for the null of 
stationarity by Kwiatkowski et.al. (1992), while the test statistics considered in Xiao (1999), Xiao and 
Phillips (2002), and Wu and Xiao (2008) are the generalizations of the KS test statistic formulated by 
Xiao (2001) to the cointegrating framework, which can also be interpreted as a CUSUM-type test 
statistic. 

, ,[ ( )] ( )k p p k kVar r v r W I
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With , 0 ,( ) ( )r
u p u pJ r B s ds  (see equation (2.9).  

 
This random limit, using the factorization , ,( ) ( )u p u u pB r W r  with , ( )u pB r  defined in 

(2.11), can also be factorized as , ( )u p kR r , with , ( )p kR r  given by 
11 1

, , , , , , ,
0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
r r

p k u p k p k p k p k p u pR r W s ds s ds s s ds sW s dsW W W W    (2.38) 

 
And where ,[ ( )] ( )u p pVar W r v r . Existing statistics for testing the null hypothesis of 

cointegration against the alternative of no cointegration that make use of the stochastic 
properties of [ ],

ˆ ( )nr pB k  consider different global measures of what can be considered excessive 

fluctuation not compatible with the assumption of a stable long-run relationship among the 
model variables. Thus, the CvM-type test by Shin (1994) is based on a global measure of 
fluctuation given by 2

, 1 ,
ˆ( ) (1/ ) ( ( ))n

n p t t pS k n B k , while that the KS-type test statistic proposed 

by Wu and Xiao (2008) is based on the recursive centered measure of maximum fluctuation 

, 1,..., , ,
ˆ ˆ( ) max | ( ) ( / ) ( )|n p t n t p n pR k B k t n B k . Xiao (1999), and Xiao and Phillips (2002) consider 

a no centered version of this test statistic given by , 1,..., ,
ˆ( ) max | ( )|n p t n t pCS k B k , which is the 

same as , ( )n pR k  when based on OLS residuals and the deterministic component contains a 

constant term. The main problem with this approach is that, unless corrected, the null 
distribution of all these test statistics are plagued of nuisance parameters due to endogeneity of 
regressors and the serial correlation in the error terms that cannot be removed by simple scaling 
methods. There exist some different methods, which are known as asymptotically efficient 
estimation methods, to remove these parameters and that differ in the treatment of each source 
of bias. Among the existing estimation methods, the three most commonly used are the 
Dynamic OLS (DOLS) estimator proposed by Phillips and Loretan (1991), Saikkonen (1991) 
and Stock and Watson (1993), the Canonical Cointegrating Regression (CCR) estimator by Park 
(1992), and the Fully-Modified OLS (FM-OLS) estimator by Phillips and Hansen (1990). These 
three estimators are asymptotically equivalent and, as was proved by Saikkonen (1991), 
efficient. The corrected test statistic proposed by Shin (1994) makes use of the DOLS residuals, 
while that the test statistics considered in Xiao (1999), Xiao and Phillips (2002) and Wu and 
Xiao (2008) are based on FM-OLS residuals. To our knowledge, there is no similar test 
statistics based on the residuals from the CCR estimation method. For a recent review and 
comparison of these three alternative estimation methods see, e.g., Kurozumi and Hayakawa 
(2009), and the references therein. Phillips (1995) and Phillips and Chang (1995) have 
considered the usefulness of the FM-OLS estimation method in a wide variety of situations 
relating the stochastic trend component of the set of regressors. This method was originally 
designed to estimate cointegrating relations directly by modifying standard OLS estimator with 
semi-nonparametric corrections that take account of endogeneity and serial correlation, with the 
main appeal that one can use the FM corrections to determine how important these effects are in 
an empirical application.  

 
As indicated in Phillips (1995), in cases where there are major differences with OLS, 

the sources of such differences could be easily located and this could also helps to provide 
additional information about important features of the data. 
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Under the assumption that the long-run covariance matrix of ,( , )t t k tu[ H , :, is 

known, the FM-OLS estimator of the cointegrating regression model (2.11) is given by 
1

, 1, ,
, ,

, ,1 1,

ˆ
( , )ˆ

n n
p n pp t p t

p t k t t
k t k tt t kuk n

Y
n
0

XX X
D W W

W
'E

                 (2.39) 

 
With ku ku kk k' ' ' J , and the transformed observations of the dependent variable

tY  are usually given by ,t t k t kY Y X J , where 1
k kk kuJ : Z  and the first difference of the 

regressors can be decomposed as , , , , ,k t k t k p p t k tZ X A W H .18It is evident that 

, ,k t k tZ H  when p = 0, but in any other case we obtain the following decomposition 

1, 1
, , 1 1, , , 1 , , , , ,

,
( : ) p t

k t k p p t k t k p k k t k p p n p tn k t
p t

Z 0
W

) W H ) H ) * W H                (2.40) 

 
Where the matrix of trend coefficients , 1k p)  is given by a linear combination of the 

elements in ,k pA . The following result establish the relation between this unfeasible version of 

the FM-OLS estimator and the OLS estimator of Dp and Ek in (2.11). 
 
Proposition 2.2. Given (2.1)-(2.25), and the FM-OLS estimator of (2.5) in (2.39), then 

we have that 
 

1 1
, , , , , , , , ,

, ,

1 1 1 1
, , , , , , , , , ,

1 1

1
,

ˆ ˆˆ ˆ[ ] [ ]
( ) ˆ ˆ

p n p n k p k n p n p n k p k n k p k

k n k n

n n

pp n p tn k t pk n kk n k tn k t k pp n pk n kk n ku
t t

kk n

a
n n

n

A A

M Q Q M Q Q

M

* D E * D E ) J

E E

W H K H J '

1 1
, , , , , , ,

1 1

n n

k tn k t pk n pp n p tn k t k kk n ku
t t

nQ Q MK H W H J '

    (2.41) 

 
With FM-OLS residuals, such that 
 

, , ,

1/2 1 1/2
, , , ,

1

ˆ ˆ( ) ( )

(1/ )( ) (1/ ) ( ) ·

t p t p kt p k
n

kt p kk n kt p kt p k ku
t

u k u k

n n n nM

H J

K K H J '

(b)
               (2.42) 

 
Where 1

, , , , ,pp n pp n pk n kk n pk nM Q Q Q Q , , 1 , ,
n

pk n t p tn k tnQ W K , 

, 1 , ,
n

kk n t k tn k tnQ K K , and 1/2 1/2
, 1 , ,( )( )n

kk n t kt p kt pn nM K K  in (2.24), and where 

, ,(1/ )kk n kk nnM M  with 1
, , 1 , , , ,(1/ )[(1/ ) ]n

kt p k t j k j p jn pp n p tnn n QH H H W W  in (2.42). 

 
                                                           
18 It can be shown that the correction term for Yt is associated with the correction for the endogeneity bias 
while ku

�'  eliminates the non-centrality bias. 
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Proof. See Appendix A.2.,Remark 2.1 The results in (2.41)-(2.42) clearly show the 
additional bias arising in the estimation of the trend parameters, and also allows to check how 
the FM-OLS estimates acts to correct for the OLS estimation results. The expression in (2.41) 
can also be rewritten as 

 

,, ,

,,

1 1 1 1
, , , , , , , , ,

1

1
, , , ,

1

ˆˆ( )
ˆˆ

(1/ )
(1/ )

(1/ )

p n pp n p k p k
n n

k n kk n k

n

pp n pk n pk n kk n k tn k t k pp n pk n kk n ku
t

n

kk n k tn k t pk
t

n
n

n

W W

M D Q Q M Q Q

M Q

D DD D ) J
E EE E

K H J '

K H 1 1
, , ,n pp n pk n k kk n kuQ D MJ '

  (2.43) 

 
Where the scaled matrices appearing in the last term are given by , ,(1/ )pp n pp nnM M , 

, ,(1/ )pk n pk nnD D , with , 1 , ,
n

pk n t p tn k tD W H , , ,(1/ )pk n pk nnQ Q , and , ,(1/ )kk n kk nnQ Q . 

 
All of these matrices have finite stochastic limits, determining the way as FM-OLS 

estimation corrects for the second-order bias arising in the OLS estimation. An alternative 
representation to these two is obtained when writing 

 

1/2 ,
, , ,( , ) p k p k

t t k t k p tn k t n
k

Y u n W D ) J
H J W K

E
            (2.44) 

 
So that (2.39) can be alternatively expressed as 

 
1

,, 1/2,
1/2 , ,

,1,

, 1(1 ) 1
1/2 ,

,1

ˆ
(1/ ) ( , )ˆ

( )

n
p tnp nv v p k p k

n n p tn k t
k tk tk n

n
p tn pv v

t k t k n
k tt ku

n n n n
n

n u n
n

W W

0
W

WD D ) J
W K

KEE

W
H J

K '

     (2.45) 

So that 
1

,, , 1/2
1/2 , ,

,1,

, 1(1 ) 1/2
1/2 ,

,1

ˆ( )
(1/ ) ( , )ˆ

( )

n
p tnp n p k p kv

n p tn k t
k ttk n k

n
p tn pv v

t k t k
k tt ku

n n n
n

n u n
n

W

0

WD D ) J
W K

KE E

W
H J

K '

              (2.46) 

Where (1 )
1 , .( ) ( )v n

t t k t k u kn u B rH J , 
(1 ) 1

1 , , 0 .( ) ( ) ( )v n
t p tn t k t k p u kn u r dB rW H J W , and also 

(1 ) 1/2 1
1 , , 0 .( )( ) ( ) ( ) ( )v n

t k t t k t k k u k ku kk kn n u r dB rBK H J ' ' J  under the assumption of 
cointegration (with v = 1/2), which determines the desired result of a limiting distribution free of 
nuisance parameters other than the conditional long-run variance 2

.u k  trough the detrended 

Brownian process . ( )u kB r  given in (2.25).  
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Also, given the partial sum process of FM-OLS residuals, [ ]
[ ], 1 ,
ˆ ˆ( ) ( )nr
nr p t t pU k u k , the 

result in (2.42) allows to obtain the following decomposition of the scaled partial sum process of 
these residuals 

 
[ ]

(1 ) (1 ) 1/2 1/2
[ ], [ ], ,

1
[ ]

1/2 1/2 1 1/2
, , , ,

1 1

ˆ ˆ( ) ( )

(1/ ) ( ) (1/ ) ( ) ·

nr
v v v

nr p nr p k kt p
t

nr n
v

kt p kk n kt p kt p k ku
t t

n U k n U k n n

n n n n nM

J H

K K H J '
  (2.47) 

Where 1/2 [ ]
1 , , ( )nr

t kt p k pn rVH , 
1/2 1

1 , , 0 , ,(1/ ) ( ) ( ) ( )n
t kt p kt p k p k p kkn n s d sB VK H ' , with , ( )k p rV  defined in (2.43). Then, 

taking all these results together with the weak limit of 1/2
[ ], [ ],
ˆ ˆ( ) ( )nr p nr pB k n U k  under 

cointegration, we get 
 

11 1
1/2

[ ], . , , , , , . ,
0 0 0

ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )
r

nr p u k p k p k p k p k p u k pn U k V r s ds s s ds s dV sB B B B      (2.48) 

 
With . , ( )u k pV s  defined in (2.43), that allows for valid (no standard) inference given that 

these residuals are exactly invariant to the deterministic trend components of the integrated 
regressors and also to the nuisance parameters arising when using OLS estimates. Under no 
cointegration, when v = �1/2, it is immediate verify that the limiting distribution of the FM-OLS 
estimates and residuals coincide with that of OLS estimates and residuals, as in (2.32) and 
(2.37).Remark 2.2. Using (2.40), with , , , , ,k t k t k p p t k tZ X ) W H , then by OLS detrending 

of ,k tX  we have , ,
ˆ
kt p kt pZ H  with ,kt pH  defined in Proposition 2.2(b) above. If we define 

now tY  as , ,
ˆ

t t kt p k t kt p kY Y YZ J H J , as indicated by Hansen (1992) (page 93), then the 

FM-OLS estimator of Dp and Ek is now given by 

 
1

, , ,, 1,1 1
,

,, , 1,,

ˆˆ
( ) ·ˆˆ

n
p n pp n pk np n pp tn

n kt p k n
k tnpk n kk n t kuk nk n n

Q Q 0
W WQ Q

DD W
H J

K 'EE
                 (2.49) 

 
Which gives exactly the same expressions as before for ,

ˆ
k nE , but not for the estimator of 

the trend parameters in ,ˆ p nD , as will be stated in the next result. The FM-OLS estimator in 

(2.39), as well as all the results in (2.41) and (2.42), is not feasible since it is defined in terms of 
the unknown quantities kJ  and ku ku kk k' ' ' J . The feasible version is obtained by 
replacing these elements by nonparametric kernel estimates of the components of the long-run 
covariance matrix : based on the OLS residuals in (2.8) and the stationary stochastic 
component of the regressors, that must be consistent under the assumption of cointegration, and 
requires a proper choice of the bandwidth to ensure the asymptotic correction for serial 
correlation and endogeneity.  
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Although in the work by Phillips and Hansen (1990) they consider the effects of 
deterministically trending integrated regressors on the results of the estimation of the 
cointegrating equation, making use of previous results by Phillips and Durlauf (1986) and Park 
and Phillips (1988), the estimation of : is based on the sample serial covariance matrices of the 
sequence , , ,ˆ( ) ( ( ), )t p t p k tk u k Z[ , without further considerations about the consequences of any 

remaining deterministic component in the series of first differences for the observations of the 
regressors. Also, the papers by Xiao (1999) and Xiao and Phillips (2002) make use of this 
sequence, both to implement feasible version of the FM-OLS estimation method and for the 
estimation of the conditional long-run variance 2 2 1

. , ,u k u u k kk k uZ : Z . Next proposition 
establish the more relevant results concerning the effects on the feasible FM-OLS estimates 
when we explicitly take into account these circumstances. 

 

Proposition 2.3. Given (2.1)-(2.5), then we have that 

 
(a) When using the sequence , , ,ˆ( ) ( ( ), )t p t p k tk u k Z[  for computation of the 

nonparametric kernel estimator of the long-run variance :, we have that 
 

ˆ ( ) ( ) ( ) ( ) ( / )n n n n n n n n n n p nm m m w m O m nC C F: :       (2.50) 

 
Where 1 1

( 1)( ) ( / )n
n n n h n nw m m w h m , and ( ) p

n nm: : , which is the kernel 

estimator based on the set of sample serial covariance matrices of the sequence 

, , ,ˆ( ) ( ( ), )t p t p k tk u kX H , that is, it is given by 1
( 1)( ) ( / ) ( )n

n n h n n nm w h m h: 6 , with 

1 , ,( ) (1/ ) ( ) ( )n
n t h t p t h ph n k k6 X X . Also, matrices nC  and nF  are given by 

 

,

0 k
n

k kk n

0C 0 C , and 
,

0 k
n

k kk n

0F 0 F          (2.51) 

 
With 1/2 1

, , ,( )kk n pk n p n kpnC D * ) , 1 1
, , , ,kk n kp p n pp n p n kpF Q) * * ) . Then, the FM-OLS 

estimator is given by 
 

, , ,,

,,
1

, ,1 1/2 (1 )
1/2 1/2, ,

, ,1 1

ˆ ˆ ˆ( ) ( )( )ˆ ( ) ˆˆ ( )

ˆ( , )

p n p k p k n np n v
n n

k n kk n

n
p tn p tnv

p tn k t t
k t k tt t

mv
v n

v

n n n z
n n

W
D D ) J4

4
E E4

W W
W K

K K
11/2

,
ˆ ( )

n
pv

ku n n

n
m

0
'

           (2.52) 

Where , ,ˆ ˆ ( )t t k n n k tz u mJ H , with 1
, , ,

ˆˆ ˆ( ) ( ) ( )k n n kk n n ku n nm m mJ : Z . 
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(b) When using the sequence , , ,
ˆ ˆˆ( ) ( ( ), )t p t p kt pk u k Z[  for computation of the 

nonparametric kernel estimator of the long-run variance :, we have that 
ˆ ( ) ( ) ( / ) p
n n n n p nm m O m n: : : , where the limiting distribution of the FM-OLS estimator 

under cointegration is now given by  
 

,,

,,
11 1 1

.
0 0, 1

ˆ ˆ( )ˆ ( ) ˆˆ ( )

( ) ( )
( ( ) , ( ) ) ( )

( ) ( )

p n pp n v
n n

k n kk n

p ppp pk k
p k u k

k kk p

v
v n

v

s s
s s ds dB s

s s

W

Q D BB B0

D D4
4

E E4

W WJ
W

    (2.53) 

With 1
0 ( ) ( )pk p ks d sD BW  the weak limit of 1/2

, 1 , ,
n

pk n t p tn k tnD W H . 

 
Proof. See Appendix A.3. 
 
Remark 2.3 The results in part (a) only applies for p t 1, with 1, 1n n k kC F 0  when 

p = 0.19 Also, it is assumed that the limit O of ( )n nw m  as nof is finite. For example, for the 

Bartlett kernel, which is symmetric with weighting function 1( / ) 1n nw h m hm  for |h| d 

mn�1 and zero otherwise, we have that ( ) 1n nw m . Also, given the matrices nC  and nF  in 

(2.51) it is evident that in this case we have 2 2 1/2
, ,ˆ ( ) ( ) ( )u n n u n n pm m o n , and 

1/2
, ,ˆ ( ) ( ) ( )ku n n ku n n pm m o nZ Z  under suitable choice of the bandwidth parameter, 

particularly when it is imposed the usual condition 1/2( )n pm o n . 

  
The remaining term, the estimator of the long-run variance of the stochastic stationary 

component of the integrated regressors, may contain a serious bias component as it admits the 
following decomposition: 
 

, , , , ,
ˆ ( ) ( ) ( )[ ( ) )] ( / )kk n n kk n n n n n kk n kk n n kk n p nm m w m m m O m nC C F: :     (2.54) 

 
Also affecting the estimators of Jk and 'kk, and hence of ku' . When p = 1, we then have 

, 0

0
(1/ )

(1)
k

n
k k n k

n
0C 0 B D

            (2.55) 

                                                           
19 Similarly, in the case of a known long-run covariance matrix :, the CCR estimator proposed by Park 
(1992) is defined as the OLS estimator between the modified dependent variable 

1 0*
, ,

ˆ( ( , )) ( )t t k n k k t pY Y k�c c � �E ' 6 J [  and *
, ,( , )p t k tc c cXW , with 1*

, , , ( )k t k t k t p k
� �X X ' 6 [ , , , ,ˆ( ) ( ( ), )t p t p k tk u k c c Z[ , 

and 0 0, , ,[ ] [ ( , )]k j k t t j j k t t j k t jE E uf f
 �  � �c c ¦  ¦' H [ H H . This method uses the same principle as the FM-OLS 

method to eliminate the endogeneity bias, while it deals with the non-centrality parameter in a different 
manner, but also relies on consistent estimates of the quantities 'k, 6 and Jk which depend on some tuning 
parameters. The feasible CCR estimator when : is unknown makes use of a nonparametric kernel 
estimator of all the quantities involved in these transformation factors that, when it is based on the sample 
autocovariances of the sequence , ( )t p k[ , might be biased or even inconsistently estimated when there is 
some remaining deterministic component in the observations of the first differences of the regressors. 
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And 

0 k
n

k kp kp

0F F0 ) )
                                                       (2.56) 

 
Where 1/2

, , , 0 0 ,( ) ( (1) (1) ) (1)n kk n kk n n k n k k k n pm n m oC C B BD D , while that the 

last term in (2.34) is 0 0kk kp kp k kF ) ) D D , so that , ,
ˆ ( ) ( ) ( )kk n n kk n n nm m O m: :  which 

can seriously distort the estimation results, specially in relation with the estimation of the factor 
correcting the non-centrality bias term, ku' .20Although rare in practical applications, the case p 
> 1 will determine that both biasing terms in (2.54) have a non-negligible effect on the 
estimation results. A final comment on these results has to be with the expression in (2.52) 
regarding the limit distribution of the estimator of the trend parameters, which that closely 
resembles the result in (2.46) but with Jk replaced by its estimator. Finally, it must also be 
commented the change in the limiting distribution of the FM-OLS estimator of the trend 
parameters in (2.53), which represents an asymptotic bias for the estimation of these parameters. 

 
Given the transformed values of the dependent variable and the resulting estimates of 

the model parameter, the FM-OLS residuals, given by , , , , ,
ˆˆ ˆ( )t p t p t p n k t k nu k Y XW D E , can be 

written as 
 

1/2
, , , , , , ,

1/2
, , , , , , ,

ˆ ˆˆ ˆ( ) ( ) ( ( ) ( ))
ˆ ˆˆ( ( ) ) ( ( ) ( ))

v
t p t k t k n n p tn p n k t k n

v
t k t k n n k t k p tn p n k t k n

u k u m n v n v
z m n v n v

Q J W 4 K 4

Q J H J W 4 K 4
    (2.57) 

 
Where , ,k t k tQ H  when using the sequence , , ,ˆ( ) ( ( ), )t p t p k tk u k Z[  for performing the 

FM estimation, and 1/2
, , , ,

ˆ ( )k t kt p kt p k t pO nZQ H H  when the transformation factors are 

based on the sequence , , ,
ˆ ˆˆ( ) ( ( ), )t p t p kt pk u k Z[ , with ,

ˆ ( )p n v4  and ,
ˆ ( )k n v4  given either by 

(2.32) or (2.33) in each case. In both cases, under cointegration we then have 
1/2

, , ,ˆ ˆ( ) ( ) ( )t p t k t k n n pu k u m O nQ J . With the results stated in part (b) of Proposition 2.3, 

this FM-OLS residuals consistently estimate the sequence ,t t k t kz u H J , which could be used 

to estimate the conditional long-run variance 2 2 1
. , ,u k u u k kk k uZ : Z . With the results 

obtained in part (a), where 1/2
, , ,ˆ ˆ( ) ( ( ) ) ( )t p t k t k n n k pu k z m O nH J J , then only in the case 

where the regressors does not contain any deterministic component, or when they contain no 
more than a constant term, it could be assured the consistent estimation of : and hence of Jk.  

 
 
 

                                                           
20 With this results, we then have that when p = 1, 0 0 1, ,

ˆ ( ) ( ) ( ) ( )kk n n kk n n n n n k k pm m m w m oc � �: : D D , with 

inverse given by 1 1 1 1
0 01

0 0

1 1, , , ,
,

ˆ ( ) ( ) ( ) ( ) ( )
( ) ( )kk n n kk n n kk n n k k kk n n p

n n n k kk n n k

m m m m o
m w m m

� � � �
�

c � �
c�

: : : D D :
D : D

 so 

that 1 1 1
, ,

ˆ ( ) ( ) ( )kk n n kk n n p nm m O m� � � �: : , and the resulting estimator of kJ  is consistent. 
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The standard practice consists on the use of an estimator of 2
.u k  based on the estimates 

of 2
u , kk: , and ,k uZ  obtained from 1

( 1)
ˆ ˆ( ) ( / ) ( )n
n n h n n nm w h m h: 6 , with ˆ ( )n h6  the 

sample serial autocovariance matrix of order h based on either , ( )t p k[  or ,
ˆ ( )t p k[ , which make 

use of the OLS residuals in (2.8). Under cointegration and consistent estimation of Jk, then 
1/2

,ˆ ( ) ( )t p t pu k z O n  which gives 

 

1/2 1/2
, ,

1 1

ˆ ˆˆ ( ) (1/ ) ( ) ( ) (1/ ) ( ) ( ) ( )
n n

n t p t h p t t h p n p
t h t h

h n u k u k n z z O n h O n      (2.58) 

 
Given that we can write (1, )t k tz J [ , then we have that 

1 1

1 1
( ) (1/ ) (1, ) (1/ ) (1, ) ( )

n n

n t t h k t t h k n
k kt h t h

h n z z n hGJ [ [ JJ J       (2.59) 

And thus we have that 
1 1

2 1/2
. ,

( 1) ( 1)
1

1/2

( 1)

ˆˆ ( ) ( / ) ( ) ( / ) ( ) ( )

1
(1, ) ( / ) ( ) ( )

n n

u k n n n n n n p n
h n h n

n

k n n p n
kh n

m w h m h w h m h O m n

w h m h O m nJ JG
         (2.60) 

With probability given by 

2 2
. , .

1ˆ ( ) (1, )p
u k n n k u k

k
m J : J

         (2.61) 

 
Under the usual requirements relative to the permitted kernel functions and bandwidth 

order, 1/2( )n pm o n , that ensure consistent estimation for this class of nonparametric long-run 

variance estimators. 
 
Once established all these relevant results, one major application is to build pivotal test 

statistics that consistently discriminate between cointegration and no cointegration in this setup. 
Making use of any of the two possible consistent estimates of the conditional long-run variance 

2
.u k , 2 2 1

. , , , , ,
ˆˆ ˆˆ ˆ( )u k n n u n uk n kk n uk nm Z : Z , or 2

. ,ˆ ( )u k n nm  as in (2.36), then the fluctuation-based 
pivotal test statistics are given by 
 

2 1 2
, . , 1 ,

ˆ ˆˆ( ) ( ) ( ( ))n
n p u k n t t pS k n B k          (2.62) 

 
1

, 1,..., . , ,
ˆ ˆˆ( ) max | ( )|n p t n u k n t pCS k B k          (2.63) 

And 
1

, 1,..., . , , ,
ˆ ˆ ˆˆ( ) max | ( ) ( / ) ( )|n p t n u k n t p n pR k B k t n B k        (2.64) 
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With , ,
ˆˆ ( ) ( )n p n pR k CS k  when the specification of the deterministic component in the 

cointegrating equation contains at least a constant term, p t 0, so that ,
ˆ ( ) 0n pU k , where 

,
ˆ ( )n pCS k  and ,

ˆ ( )n pR k  have been proposed by Xiao (1999) and Xiao and Phillips (2002), and Wu 

and Xiao (2008), respectively, while that ,
ˆ ( )n pS k  is the test statistic proposed by Shin (1994), 

but based on FM-OLS residuals. Making use of the result in (2.29), and similarly to equation 
(2.18), then under cointegration we have that 

11 1

[ ], . . , , , , , . ,
0 0 0

ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )
r

nr p u k u k p k p k p k p k p u k pB k W r s ds s s ds s dW sW W W W    (2.65) 

 
So that these three test statistics has limit null distributions that are free of nuisance 

parameters and are consistent against the alternative hypothesis of no cointegration. Their 
limiting null distributions are the corresponding functional transformations of the fundamental 
random limit giving between brackets in (2.65). According to several simulation experiments, 
these test statistics seem to perform well in finite samples in terms of empirical size and power. 
These authors also provide the relevant critical values for performing the tests. In all the cases, 
the tests are right-sided thus rejecting the null hypothesis of cointegration for high values of 
each of these test statistics. Asymptotic critical values can be founded in the respective papers 
by these authors. 

 
Both finite sample size and power of all these test statistics crucially depends on the 

quality of the estimation of the long-run variance : trough the choice of the bandwidth value 
and also on the kernel function. Also, as has been proved above, there could be some situations 
where some of the components of this matrix could be estimated with bias, which could have 
serious effects on the resulting FM-OLS estimates of the model parameters and residuals, and 
hence on the properties of the test statistics based on these results. 

 
Finally, there exist the possibility to obtain a pivotal test statistic only based on simple 

functionals of the OLS residuals, with limit distribution free of nuisance parameters, but which 
serves to test the opposite hypothesis to the other test statistics discussed above, that is the null 
of no cointegration against the alternative of cointegration. In this sense, it could serve as a 
complement, both in the case of confirmation or conflict, to the testing procedures considered. 
The proposed test statistic is a generalization of the variance ratio statistic, proposed by 
Breitung (2002) and Breitung and Taylor (2003) to testing for a fixed unit root against 
stationarity, in the cointegration framework21, and it is given by 

2

1/2
,

1 1
,

1/2 2
,

1

ˆ(1/ ) (1/ ) ( ( ))
ˆ ( )

ˆ(1/ ) ( ( ))

n t

j p
t j

n p n

t p
t

n n n u k
VR k

n n u k
                   (2.66) 

 

                                                           
21 Breitung (2002) developed a generalized version of the variance ratio statistic to multivariate processes 
to test hypothesis on the cointegration rank among a set of m > 1 series. In this sense, the test statistic in 
(2.41) differs from the one proposed by this author and it is designed to distinguish between no 
cointegration against cointegration with just one cointegration relationship. 
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That can also be written as , ,
ˆ ˆ( ) (1/ ) ( )n p n pVR k n k , in terms of the ratio of the residual 

variance of the partial sum of residuals to the residual variance of the residuals, with 
2 2

, 1 , 1 ,
ˆ ˆˆ ( ) (1/ ) ( )/ ( )n n

n p t t p t t pk n U k u k , where ,ˆ ( )t pu k  are the OLS residuals from the 

estimation of the cointegrating regression model (2.3), and , 1 ,
ˆ ˆ( ) ( )t
t p j j pU k u k . 22 

Next result establish the limiting distribution of the variance ratio test statistic (2.41) 
under no cointegration and also its behavior under cointegration, determining that the testing 
procedure is left-sided, rejecting the hypothesis of no cointegration for low values of the test 
statistic. Appendix B.1 provides tables with the quantiles of the limiting distribution under no 
cointegration when the cointegrating regression model does not contain any deterministic 
component, and when there is a constant term or a constant and a linear trend component. 

 
Proposition 2.4. Given (2.1)-(2.11), Assumption 2.1 and the OLS estimator of (2.5) in 

(2.14), then under no cointegration we have that 

(a) 

21

,
0 0

, 1
2

,
0

( )
ˆ ( )

( )

r

p k

n p

p k

R s ds dr
VR k

R s ds
         (2.67) 

With , ( )p kR r  defined in (2.21), while that under cointegration we have that 

(b) 
2 1

2
, ,2 0

ˆ ( ) ( )u
n p uk p

u

k w r dr          (2.68) 

With , ( )uk pw r  given in (2.36), so that the test is consistent, with diverging rate 
1

,
ˆ ( ) ( )n p pVR k O n . 

 
Proof. The result in (2.7) follows directly from the continuous mapping theorem making 

use of the result in (2.37), which determines that the limiting distribution is invariant to the 
serial correlation in the errors from the cointegrating equation and the endogeneity of the 
regressors. On the other hand, under cointegration, taking the OLS residuals as in (2.21), we get 
that [ ],

ˆ(1/ ) ( )nr pn U k  weakly converges to , ( )u uk pw r , as in (2.35), and 
2 2 1/2 2

1 , 1ˆ(1/ ) ( ) (1/ ) ( )n n p
t t p t t p un u k n u O n , so that the final result in (2.68) follows 

again by application of the continuous mapping theorem. 
 
The main advantage of the use of this last testing procedure is that while not requiring 

the choice of any tuning parameter, it is very simple to compute and the limiting distribution 
under no cointegration in (2.67) is free of nuisance parameters. Appendix B.1 presents some 
numerical results relating the use and properties of this test statistic. Particularly, Table B.1.1 
presents the relevant quantiles of the null distribution under no cointegration for k = 1, ..., 5 and 
a variety of choices of the deterministic component, particularly when there is no deterministic 
component, and also in the more usual cases of a constant term (p = 0), and a constant term and 
a linear trend component (p = 1).  

                                                           
22 This proposal follows the same idea as the extension of the KPSS statistic for testing stationarity 
against a fixed unit root to the cointegration framework made by Shin (1994). Breitung (2002) proposed a 
multivariate generalization of the variance ratio statistic and a semi-nonparametric test statistic for testing 
for the number of cointegrating relations among the components of a m-dimensional vector, with m t 1.  
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Also, Table B.1.2 presents the results of a simulation experiment to evaluate the finite-

sample power of the testing procedure based on the test statistic ,
ˆ ( )n pVR k against near 

cointegration using the local-to-unity approach by Phillips (1987). These numerical results are 
based on samples sizes n = 100, 250, 500 and 750 and reflects the behavior of the limiting 
distribution given in (2.42) where the component , ( )u pW r  of the random element , ( )p kR r  is 

replaced by 1 1
, 0( ) ( ) ( ) ( ) ( )c p c p pp p cW r W r r sW s dsQW W , with ( )cW r  a standard Ornstein-

Uhlenbeck process. The results indicate an acceptable power, and increasing with the sample 
size, that confirms the consistency property stated above. 

 
2.2 IM-OLS estimation with trending regressors 
 
In this section we consider the new estimator of a static cointegrating regression model like 
(2.3) recently proposed by VW. For implementing this new esitmation method, these authors 
show that a simple transformation of the variables in the cointegrating regression model allows 
to obtain an asymptotically unbiased estimator of Ek with a zero mean Gaussian mixture limiting 
distribution, but their analysis is limited to the case where the assumed DGP is as in (2.1) with 

, , 1k p k pA 0 , that is with integrated regressors without any deterministic component. Like FM-

OLS, the transformation has two steps but neither one requires the estimation of any of the 
components of :, and so the choice of bandwidth and kernel is completely avoided. Thus, the 
first step consists in computing the (cumulate) partial sums of the variables in both sides of (2.3) 
which gives the so-called integrated cointegrating regression model as 
 

, , 1,...,t p p t k k t tS U t nS SD E          (2.69) 

 
With 
 

 1
t

t j jU u , 1 0, 1 , 1 0, 0, , 0,
t t t

t j j p j p j j j p p t tS Y hSD W D , 
1 1

, 1 , , 1 , , ,
t t

p t j p j p n j p jn p n p tnS SW * W *        (2.70) 

 
And 
 

1
, 1 , , , 1 , , , , ,

t t
k t j k j k p p t j k j k p p n p tn k tS X A S A S HK *       (2.71) 

 
Taking together (2.70) and (2.71) we then have 

 
1 1 1
, 1,, , ,

0, 0,1 3/2 3/2
, , , , , ,

p n p kp t p tn p tn
n n tn

k t k p p n k k k t k t

n n n
n n n n n

0S S S
W W gS A I H H

*
*

               (2.72) 

 
Where, for t = [nr], we get 
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1
,[ ] 0

[ ] 3/2
,[ ] 0

( ) ( )
( )

( ) ( )

r
p nr n p p

nr n r
kk nr k

n r s ds
r

rn s ds
S gg g gH B

W
      (2.73) 

 
As nof. Then, application of the OLS estimation method to equation (2.69) gives the 

so-called Integrated-OLS (I-OLS) estimator of pD  and kE , which provides the following 

transformation of the estimates 
1

, , , , ,(1 )
0, 1/2

, ,
1

(1 )

1 1

[( ) ( )]
( )

(1/ ) (1/ )

v
p n p p n p n p k p k n kv

n v
k n k k n k

n n
v

tn tn tn t
t t

n
n

n

n n n U

A
W

g g g

D D * D D E E
E E E E

     (2.74) 

Where 
 

1
(1 )

01

(1/ ) ( ) ( )
n

v
tn t u

t

n n U r J r drg g          (2.75) 

 
With ( )rg  given in (3.4), ( ) ( )u uJ r B r  under the assumption of cointegration, v = 1/2, 

and 0( ) ( )r
u uJ r B s ds  under no cointegration, that is when v = �1/2. Given that the limiting 

result in (3.6) does not contain the additive term ku' , as appears in the limiting distribution of 
the OLS estimator of the cointegrating vector under cointegration, partial summing before 
estimating the model thus performs the same role for I-OLS that 1( , )p kun0 '  plays for FM-

OLS, but this still leaves the problem that the correlation between tu  and ,k tH  rules out the 

possibility of conditioning on ( )k rB  to obtain a conditional asymptotic normality result.23 
Irrespective of this result concerning the presence of a second-order bias, under cointegration 
these new estimators of the model parameters are consistent with the same rate of convergence 
as with the existent estimation methods previously discussed. Given that the practical utility of 
these results is limited only to the case of exogenous regressores, an additional correction must 
be performed to achieve the desired distributional results. 

 
The solution to this problem proposed by these authors only requires that ,k tX  be added 

as additional regressors to the partial sum regression (2.69) as 
 

, , , 1,...,t p p t k k t k k t tS t nS S XD E J        (2.76) 

 

                                                           
23 Using, as before, the structure of Bu(r) from Assumption 2.1, we have that the stochastic integral in 
(3.6) is decomposed as 1 1 1

0 0 0.( ) ( ) ( ) ( ) ( ( ) ( ) )u u k k kr B r dr r B r dr r r drc³  ³ � ³g g g B J . By defining 0( ) ( )rr s ds ³G g , 
then using integration by parts we have that this term can also be expressed as 

1 1 1
0 0 01 1 1( ) ( ) ( ) ( ) ( ) ( ) [ ( ) ( )] ( )u u u ur B r dr B r dB r r dB r³  � ³  ³ �g G G G G Similarly we have 
1 1
0 0 1. .( ) ( ) [ ( ) ( )] ( )u k u kr B r dr r dB r³  ³ �g G G , which is mixed Gaussian. For the second term above we get a 

similar representation with the same behaviour, but it still depends on the degree of endogeneity of the 
regressors as measured by 1

k kk ku
� J : Z . 
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Where ,t t k k tU XJ , and which can be now called the integrated modified (IM) 
cointegrating regression. Following with the same structure of analysis as in previous section, 
particularly in relation to the structure of the underlying deterministic component of the 
integrated regressors, we next consider the properties of the OLS estimator of the model 
parameters ( , , )p k kD E J  in (2.76) depending on this characteristic. 

 
2.2.1 The case of regressors without deterministic trends 
 
By OLS estimation of ( , , )p k kD E J  in (3.7), we have that this estimator can be written as 

1 1,
1

, 0,
1 1 1 1

,

1
1 1 (1 )

0,
1 1

( ) (1/ ) (1/ )

( ) (1/ ) (1/ ) ( )

p n p n n n n

k n k tn tn tn t n tn tn tn t
t t t t

k n k

n
v v

n tn tn tn t
t t

n n

n n n n

g g g W g g g

W g g g

D D
E E
J J

n

   (2.77) 

Where it has been used the following representation for the set of regressors 
 

1 1 1
, , ,,

3/2 3/2
, , 1, , 1,

1/2 1/2
, , ,

( )
( )
( )

p n p tn p tnp t

k t k t n k t n tn

k t k t k t

n n n
n n n n

n n n

S SS
S H W H W g
X

*

K K
      (2.78) 

 
Given that in this case, and from (2.1), we impose the restricction , , 1k p k pA 0 , so that 

, ,k t k tX K , where the weighting matrix is given by 1
1, , , ,( , , )n p n k k k kdiag n n n nW I I* . 

Thus, we get 
 

0,
1

1, , 0

,

( )( )
( ) ( ) ( ) ( )

( ) ( )

r
pp t p

r
n k t tn k k

k kk t

s dsr
r r s ds r

r r

S g
W S g g g B g
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With 1/2 1/2

1( , , )p kk kkdiag I3 : : , ( ) ( ( ), ( ), ( ))p k kr r r rg g g W , and 

0( ) ( )r
k kr s dsg W , so that ( )rg  and ( )rg  are full-ranked processes, in the sense that 
1
0 ( ) ( )r r drg g 0  a.s. Rewriting (2.77) as: 
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     (2.80) 
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Then, the limiting distribution of the IM-OLS estimates of the model parameters only 
depends on the stochastic limit of the term (1 ) (1 ) (1/2 ) 1/2

,( )v v v
t t k k tn n U n nJ K , both 

under cointegration and no cointegration. From the results in Section 2, we have that under 
cointegration, taking v = 1/2, then 
 

(1 ) 1/2 1
. .( ) ( ) ( ) ( ) ( ) ( )v

t t u k k u k ku kk k k u kn n B r r B r r B rB BJ Z : J         (2.81) 
 

 
 
 
Where the last equality comes from the assumption that 1

k kk kuJ : Z , while that, under 

no cointegration when taking v = �1/2, then we get 3/2
0( ) ( )r

t u un J r B s ds , that do not 
depends on the integrated regressors. These results imply that this estimator provides a well 
defined limiting distribution which, apart of some scale factors, will allow to develop valid 
inferential procedures. Theorem 2 in VW considers this case when , , 1k p k pA 0 , which 

corresponds to the case where the integrated regressors do not contain any deterministic trend 
component, so that the trending parameters in the specification of the cointegrating regression 
must be associated to the deterministic component of the dependent variable. Also, taking (2.76) 
and (2.77), the sequence of IM-OLS residuals is given by 

 
1

, , , , , , , ,
1 1 1 1 3/2 1/2

, , , , ,
1 1/2 1/2 1

, ,

( ) ( ) ( ) ( )
( )[ ( )] ( )[ ( )]

( )[ ( )] ( )

t p t p tn p n p n p k t k n k k t k n k
v v v v

t p tn p n p n p k t k n k
v v v

k t k n k t tn n

k
n n n n n n
n n n n v

S S X
S H

g

* D D E E J J
* D D E E

K J J 4
        (2.82) 

 
Which implies that the scaled t-th IM-OLS residual, given by 

 
(1 ) (1 )

, ( ) ( )v v
t p t tn nn k n vg 4          (2.83) 

 
 
Will have a well defined stochastic limiting distribution, both under cointegration and 

no cointegration. The following result provides all these limiting distributions under these two 
possible situations, extending the results in Theorem 2 and Lemma 2 by VW concerning the IM-
OLS estimators and scaled IM-OLS residuals in (2.80) and (2.83). 

 
Proposition 3.1. Given (2.1) under the assumption that , , 1k p k pA 0 , and under 

Assumption 2.1, then under cointegration we have that: 
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1/2 1
, , 11 1

0
, .

0 0

,

11 1

.
0 0

11 1
1

. .
0 0

( )
( ) (1/2) ( ) ( ) ( ) ( ) ( )

( ) ( ) [ (1) ( )] ( )

( ) ( ) ( ) [ (1) ( )] ( )
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* D D
4 E E 4
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3

     (2.84) 

11 1
1/2

[ ], . .
0 0

11 1

. . . . ,
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

nr p u k u k

u k u k u k u k uk p

b n k B r r s s ds s B s ds

W r r s s ds sW s ds R r

g g g g

g g g g
    (2.85) 

While that, under no cointegration, we have that 
  

1/2 1
, , 11 1

1
,

0 0
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,
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1

0 0
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4 E E 4

J J

3

    (2.86) 

 And 
 

11 1
3/2

[ ],
0 0

11 1

0
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ (1) ( )] ( )

nr p u u

r
u u u

d n k J r r s s ds s J s ds

W s ds r s s ds r W r dr

g g g g

g g g G G
    (2.87) 

 
Where 0 0( ) ( ) ( )r rr s ds s dsG g g3 , with 1/2 1/2

1( , , )p kk kkdiag I3 : : , and 

( ) ( ( ), ( ), ( ))p k kr r r rg g g W , with 0 0( ) ( ) ( )r r
u u u uJ r B s ds W s ds , and where we can write 

0 0 0 0 1 0
, , .( , , ) ( )p k k u k4 4 4 4 3 T , and 1 1 1 1 1 1

, ,( , , ) ( )p k k u4 4 4 4 3 T , with 

, ,( , , )j j j j
p k kT T T T , j = 0, 1. 

 
Proof. The proof of parts (a) and (b) is given, respectively, in Theorem 2 and Lemma 2 

in VW. The proof of parts (c) and (d) follows the same steps and only requires make use of the 
weak convergence of the sequence 3/2

[ ]nrn  to 0( ) ( )r
u uJ r B s ds  under no cointegration. 

 
An interesting by product of these distributional results under cointegration is that, 

conditional on ( )k rW , it holds that 0 ( , )IMN 0 V4 , where the conditional asymptotic 

covariance matrix IMV  is given by 
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11 1
2 1

.
0 0

11
1

0

( ) ( ) ( ) [ (1) ( )][ (1) ( )]

( ) ( )

IM u k r r dr r r dr

r r dr

V g g G G G G

g g

3

3
       (2.88) 

 
That differs from the conditional asymptotic covariance matrix of the FM-OLS 

estimators of pD  and kE  in the case where there is no any deterministic component in the 

structure of the observed integrated regressors. 
 
Denoting by ( ) ( ( ) , ( ) ) ( )p k FMr r r rm B mW 3 , with 1/2

1diag( , )FM p kkI3 :  and 

( ) ( ( ) , ( ) )p kr r rm WW , then the conditional asymptotic covariance matrix of the FM-OLS 

estimator of pD  and kE  is given by 

 
11

2 1 1
.

0
( ) ( ) ( )FM u k FM FMr r drV m m3 3               (2.89) 

 
There remains the question of how to compare these two covariance matrices,24 but the 

results from a simulation study in VW (2011) generally indicate that the RMSE of the IM-OLS 
estimates tend to be larger than the RMSE of OLS and FM-OLS, except for highly endogenous 
regressors where the IM-OLS estimators performs better than the FM-OLS, specially when a 
large bandwidth is used. 

 
These authors also suggest the use of the first difference of the IM-OLS residuals in 

(2.82) to define a semiparametric kernel estimator of the conditional long-run variance 2
.u k , 

characterizing the limiting distribution of the IM-OLS parameter estimator and residuals under 
cointegration. Thus, by denoting , ( )t pz k  as , ,( ) ( )t p t pz k k , then from (2.82) the sequence of 

first differences of the IM-OLS residuals can be decomposed as 
 

1 1 1
, , , ,

1 3/2 1/2
, ,

1 1/2 1/2
, ,

1 1/2 1/2
, , , , ,

1/2
,

( ) ( )[ ( )]
( )[ ( )]
( )[ ( )]

( [ ( )] [ ( )])
[

v v
t p t p tn p n p n p

v v
k t k n k

v v
k t k n k

v v v
t p tn p n p n p k t k n k

v
k t

z k n n n
n n n
n n n

z n n n n
n n

S
H

* D D
E E

K J J
W * D D K E E
H 1/2

,( )]v
k n kJ J

    (2.90) 

Where ,t t k k tz u J H  is the fully modified error term from the cointegrating equation 
in levels. Then, the proposal consists in computing the estimator 

 
1

2

( 1)

( ) ( / ) ( )
n

n n n n
h n

m w h m h         (2.91) 

                                                           
24 In a recent revised version of the paper by VW, available at https://www.msu.edu/~tjv/IMpaper.pdf, 
these authors establish the inequality FM IMdV V , conditional on ( )k sW  for the pD  and kE  components, 
by using a continuous time version of the Gauss-Markov Theorem applied in this limiting framework. 
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For a given choice of kernel and bandwidth, with 1 , ,( ) (1/ ) ( ) ( )n
n t h t p t h ph n z k z k  

the hth-order sample serial covariance of these residuals. The following proposition 
characterizes the asymptotic behavior of this estimator, both under cointegration and no 
cointegration. 

 
Proposition 3.2. Given the conditions under which the limiting distributions of the IM-

OLS parameter estimators and residuals are valid, and under standard assumptions on the 
magnitude of the bandwidth parameter, then, under cointegration we have: 

 
(a) 2 2 0 0

. , ,( ) (1 )n n u k k km T T         (2.92) 

 
While that under no cointegration we have that 2 2( ) ( )n n pm O n , with 

 
(b) 2 2 2 1 1

, ,(1/ ) ( )n n u k kn m T T             (2.93) 

 
With ,

j
kT , j = 0, 1, the scale-free random component of the limiting distribution of the 

IM-OLS estimator of kJ , both under cointegration (when j = 0) and under no cointegration 
(when j = 1). 

 
Proof. See Appendix A.4 
 
Remark 3.1. From the result in (2.92) we have that, under cointegration, the kernel 

estimator of the conditional long-run variance converges to a multiple of 2
.u k , and the 

convergence is in distribution instead of the usual convergence in probability, so that this 
estimator is not consistent in the usual sense but still proves useful to built test statistics that are 
free of nuisance parameters. On the other hand, under no cointegration, the estimator diverges at 
the rate n2 and its limit distribution depends again on a quadratic form defined in terms of the 
random vector determining the limit distribution of the IM-OLS estimator of kJ  under no 
cointegration. The result in (2.92) was proved earlier by VM, but the one in (2.93) is new here. 
In both cases, the limiting results are valid under a variety of permitted kernel functions and 
only require to impose some upper limit on the magnitude of the bandwidth parameter, nm , 
which may be determined both as a deterministic or a stochastic function of the sample size. A 
very general and sufficient condition can be stated as 1/2( )n pm O n , with 0 < G d 1/2, which 

also covers the deterministic case.25 In any case, there remains to choose some practical rule for 
the effective determination of the number of sample autocovariances to enter in the computation 
of this estimator. A final comment must be made on the limiting behavior of the estimator 

2 ( )n nm  under the assumption of no cointegration.  
 
 

                                                           
25 See, for example, Jansson (2002, 2005b) where the sample-dependent bandwidth parameter is 
formulated as ˆ ˆn n nm a b , where ˆna  and nb  are both positive, with 1 1ˆ ˆ ( )n n pa a O��   and nb  is nonrandom 

with 1 1 2 1/ ( )n nb n b o� ��  , so that 1ˆ ( )n pa O  and 1 2/( )nb o n , which gives 1 2/ˆ ( )n pm o n . 
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Particularly, it has been shown that the most commonly used nonparametric kernel 
estimators, such as the one that makes use of the OLS residuals through the plug-in estimator 

2 2 1
. , , , ,

ˆˆ ˆˆ ˆ( )u k n n n ku n kk n uk nm Z : Z  or, alternatively, the one based on the FM-OLS residuals 
2

. ,ˆ ( )u k n nm  defined in equation (2.61), are ( · )p nO nm  under no cointegration when nof, so that 

the divergence rate is dependent on the bandwidth expansion rate and it is lower than for the 
estimator based on the first difference of the IM-OLS residuals. As will be considered in the 
next section, this result has a very important impact on the behavior and properties of the test 
statistics that will be introduced later.Alternatively, and following the idea developed by Kiefer 
and Vogelsang (2005), and further analized by Sun, Phillips and Jin (2008), we could consider 
the so called fixed-b estimation theory of a long-run variance based on a bandwidth that is 
simply proportional to the sample size as mn = b·n, with b � (0,1]. The results in this case were 
extended by VW to models with nonstationary regressors, but the asymptotics are relatively 
more complex and no treated here. A particular case, that can be treated without any additional 
development, is when b = 1 so that the bandwidth is set equal to the sample size, mn = n. The 
main difference between this latter approach and the standard one, with an effective truncation 
of the number of autocovariances used in the computation, is that this assumption allows to 
obtain a limiting expression for the nonparametric long-run variance estimator that is a random 
variable depending on the kernel w(·) and the value of b. Thus, this approach represents an 
informative theory that allows to capture the impact of the bandwidth and kernel choices on the 
sampling behavior of (2.91).When b = 1, and by Lemma 1 in Cai and Shintani (2006) for the 
Bartlett kernel26, w(x) = 1�|x|, for |x| d 1, we can write (2.91) as follows 
 

2 1 2 1 (1 ) 2
,

1

(1 ) (1 ) (1 ) 2
, , ,

1

( ) 2 ( ( ))

( ( )) ( ( )) ( ( ))

n
v v

n t p
t

n
v v v

n p t p n p
t

n n n n k

n k n k n k
        (2.94) 

 
Whose asymptotic distribution is proportional to 2

.u k  under the cointegration 
assumption by making use of the result (b) in Proposition 3.1. Thus, under cointegration and by 
simple application of the continuous mapping theorem, we have 
 

1 1
2 2 2 2

. , , , ,
0 0

( ) 2 ( ) (1) ( ) (1)n u k uk p uk p uk p uk pn R s ds R R s ds R      (2.95) 

 
Also, from (2.94) and making use of the result (d) in Proposition 3.2 under no 

cointegration, it is immediate to check that 2 2( ) ( )n pn O n , where the limiting distribution of 
2 2 ( )nn n  is proportional to the long-run variance of the error sequence in the cointegrating 

regression, 2
u , as in equation (2.93), but with a different multiplicative random component. 

 
 

                                                           
26 This result is an extension of the basic one formulated by Kiefer and Vogelsang (2002) when the total 
sum (over the full sample size) of the variables used in the computation of the sample autocovariances is 
not zero, as in the case where OLS residuals from a regression with a constant term are used. 
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2.3 The case of regressors with deterministic trends 
 
This last section will be dedicated to the analysis of the performance of this new estimation 
method for a linear cointegrating regression equation when the integrated regressors are 
characterized by an underlying deterministic trend component, that is, when, from (2.1) and 
(2.5), we write 1 1/2

, , , , ,( )k t k p p n p tn k tn nX A * W K , with , , ,( 1)p tn p tn p t nS SW . Once 

analyzed the consequences of this specification on the structure of the IM-OLS estimator, we 
propose a simple possible solution to the problems encountered. First of all, from (2.76) we 
have that the set of regressors can be written as: 
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      (2.96) 

Or more compactly, by using tng  defined in (2.23), as 

,
1

, 21, 22, ( 1) 21, 21, 22, ( 1)

,

( )
p t

k t n tn n t n n tn n n t n

k t

S
S W g W g W g W W g
X

     (2.97) 

 
Where the last term in the expression between parenthesis is given by 

1
,( 1) 1

1 1 3/2
21, 22, ( 1) 21, 22, , 1

1 11/2
, , ,( 1), 1 ( )

p t n p

n n t n n n k t k

k p p n p t nk t

n
n

n nn

S 0
W W g W W H 0

A S*K
    (2.98) 

 
Which diverge with the sample size, even in the simplest case of a constant term (p = 0). 

Alternatively, if we redefine the IM regression model (3.7) in terms of the IM-OLS detrended 
variables we have * * * *

, , , , 1,...,t p k kt p k kt p t pS t nS XE J  

 
Where 
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1,
*

, , , , , , ,
1 1*

, ,,

t p jn nt

kt p k t k j p j p j p j p t
j j

k t k jkt p

S SS
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X XX
       (2.99) 
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And similarly for *
,t p , then given 0, , 0,t p p t tS hSD  and ,k tS  as in (3.3) we then have 

that 
 

1* *
, 0, 0 ,0,

, , , ,* *
, ,1 1, ,

n n
t p j t pt

p j p j p j p t
k t k jj jkt p kt p

S h hh
S S S SH HS H

       (2.100) 

 
Which are free of trend parameters, while that for *

,kt pX  we get the decomposition 
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1
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   (2.101) 

With 
1

* 1/2 2 1/2 2 1
, , , , , , ,

1 1

( ) (1/ ) ( ) (1/ ) ( )
n n

kt p k t k j p jn p jn p jn p tn
j j

n n n n n nS S S SK K K     (2.102) 

And 
1

* 1 2 2 1
, , , , , , , , , ,

1 1

(1/ ) (1/ ) ( )
n n

k p p t k p p n p tn p jn p jn p jn p jn p tn
j j

n n nA A S S S SW * W W           (2.103) 

That is * 1 *
, , , , ,k p p t k p p n p tnA AW * W , so that 1/2 * 1/2 * 1/2 1 *

, , , , ,( )kt p kt p k p p n p tnn n nX AK * W . 

For p = 0, 1/2 *
,0ktn X  1/2 * 1/2 * 1/2 * 1/2

,0 ,0 0, ,0 ( )kt k tn ktn n n O nAK W K , so that the 

deterministic component is asymptotically irrelevant, while for p t 1 we have that 
1/2 * 1/2 * 1/2

, , ( )p
kt p kt pn n O nX K , which implies that deterministic component dominates the 

stochastic one yielding inconsistent results. Thus, to deal with this general case, making use of 

the result for the OLS detrended observations of ,k tX  and , ,k t k tZ X , , ,
ˆ
kt p kt pZ H , in 

Proposition 2.1 and in Remark 2.2 respectively, then we get the following augmented version of 
(2.27). 

 

, , , , , , , ,
ˆ ˆ ˆ ˆ ˆˆ , 1,...,t p k kt p k kt p t p k kt p k kt p k kt p t pY u z t nX Z Z X ZE J J E J            (2.104) 

 
Which gives the following corrected version of the IM cointegrating regression equation 
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With , 1 , 1 ,
ˆ ˆt t
kt p j kj p j kj pS X K , and , 1 , , ,
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               (2.106) 
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For the partial sum of the OLS detrended observations ,
ˆ
kt pZ , ,

ˆ
kt pT , we have 

[ ] [ ] [ ]
1
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                (2.107) 

Which, asymptotically, converge to a k-dimensional Brownian bridge of order (p+1) 
 

1
1/2 1
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ˆ ( ) ( ) ( ) ( ) ( )
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k nr p k p k k p pp pn r r d s s s dsT V B B QW W              (2.108) 

So that the random limit for the scaled vectors in the last multiplicative term in (2.106) 
we have 
 

3/2
[ ], 0 ,

1/2
,[ ],

ˆ ( )( )ˆ ( )

r
k nr p k p

p
k pk nr p

n s dsr
rn

S Bg
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      (2.109) 

 
Then, from (2.10), (2.12) and (3.22) it can be easily verified that under cointegration (|D| 

< 1 in Assumption 2.1), the scaled error term in the IM cointegrating regression (3.20) behaves 
asymptotically as 
 

1/2 1/2 1/2
, , , . ,

ˆ ( ).t p t p k kt p u k pn n U n V rTJ       (2.110) 

 

When taking t = [nr], where 1 1
. , . 0 0 .( ) ( ) ( ) ( ) ( )r

u k p u k p pp p u kV r B r s ds s dB sQW W  only 

depends on . ( )u kB r  and can also be written as . , . . ,( ) ( )u k p u k u k pV r W r , with 
1 1

. , . 0 0 .( ) ( ) ( ) ( ) ( )r
u k p u k p pp p u kW r W r s ds s dW sQW W . Thus, we propose to obtain the IM-OLS 

estimator of the coefficient vector ( , )k kE J , based on the OLS detrended observations, which is 
given by 
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With IM-OLS residual sequence given by 

 

,
, , , ,

,

ˆ ˆˆ( ) ( , ) k n
t p t p kt p kt p

k n

k S S T E
J

     t = 1, ..., n     (2.112) 

Next proposition establish the main result in this section related to the weak 
convergence of IM-OLS estimators and residuals under the assumption of cointegration, that is 
when the error term sequence tu  in the original cointegrating regression equation (2.3) is 

nonstationary with D = 1 in Assumption 2.1.Proposition 3.3. Given (2.1) and (2.2), and under 
Assumption 2.1, the IM-OLS estimation of the cointegrating regression model in (2.5) based on 
the IM regression (3.20) with OLS detrended observations, then equation (2.111) determine 
that: 
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Which, under cointegration, gives 
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And 
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With . , . . ,( ) ( )u k p u k u k pV r W r  as in (2.12), where ( )p rg  is given in (3.22) can be written 

as ( ) · ( )p pr rg g3 , with 0( ) ( )r
p pr s dsG g ( )p rG3 , and 1/2 1/2

, ,( , )k k k kdiag3 : : . 

 
Proof. See Appendix A.5. 
 
Remark 3.1. As can be seen in (c) and (d) above, for inferential purposes related to 

hypothesis testing relating the model parameters kE  and kJ , these limiting results only depends 

on 2
.u k  and ,k k:  as nuisance parameters, as in the case of the use of asymptotically fully 

efficient estimation methods. Specially relevant, when using the IM-OLS residuals in (3.25), is 
the question of possible consistent estimation of the conditional long-run variance 2

.u k  based on 

the first differences of , ( )t p k , , ( )t p k .  

 
With these results, and under the same assumptions on the bandwidth parameter and 

kernel function as before, for the nonparametric kernel estimator 2 ( )n nm  defined in (3.15) we 

get a similar result to (3.16) under cointegration where the limiting random element 0
,kT  is 

taken from the last k terms in the limit distribution given in result (c) above. 
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2.4  IM-OLS residual-based test for the null of cointegration 
 
In this section we propose some new statistics based on the sequence of IM-OLS residuals, as 
has been defined in section 3, for testing the null hypothesis of cointegration against the 
alternative of no cointegration by looking for excessive fluctuations in the sample paths of this 
residual sequence .  
 
 

These new test statistics are partially inspired by the nonparametric variance-ratio 
statistic proposed by Breitung (2002) for testing the unit root null hypothesis against stationarity 
in a univariate time series, in the sense that our statistics are totally free of tuning parameters. In 
our case, we look for a unit root-like behavior in the residual sequence , ( )t p k  which is 

compatible with the stationarity of the error term ,t pz  in the augmented cointegrating regression 

among the OLS detrended variables. 
 

In order to obtain a complete set of test statistics, including the case where there is no 
deterministic component neither in the specification of the cointegrating regression nor in the 
underlying structure of the observed integrated regressors (that is when 1p p0D  and 

, , 1k p k pA 0 ), we also consider the case where the IM cointegrating regression is given by 

 

, ,t k k t k k t tS S XE J , t =  1,  ….,  n,                 (2.117) 
 

Where the IM-OLS estimator of Ek and Jk is now given by 
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Where it is verified that 3/2 1/2 3/2 1/2

, , , ,( , ) ( , ) ( )k t k t k t k tn n n n rS X H gK  as nof 

for t = [nr], with ( ) ( ( ) , ( ) )k kr r rg g B  that admits the same factorization as for the last two 
terms in (3.21). Thus, under the assumption of cointegration, the limiting distribution of these 
estimates is as in Proposition 3.1, with ( )rg  replaced by ( ) ( ( ) , ( ) )k kr r rg g W .Once obtained 
the corresponding sequence of IM-OLS residuals in the appropriate specification and estimation 
of the IM cointegrating regression equation, that is ( )t k  from OLS estimation of (2.117) and 

, ( )t p k  from estimation of (2.76)27 . 

                                                           
27 In what follows we use this common notation to the IM-OLS residuals from estimating (3.7), , ( )t p k] , t 
=   1,  …,   n, both in the case where 1, ,k p k p� A 0 , see equation (3.12), and also in the case of the OLS 

estimation of the specification given by equation (3.20), when 1, ,k p k p�zA 0 , which is based on OLS 
detrended observations of the model variables. 
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We define the following main components of our fluctuation test statistics 
 

2
1,

1

( ) (1/ ) ((1/ ) ( ))
n

n t
t

F k n n k                   (2.119) 

 

2, 1,...,
( ) max (1/ )| ( )|n tt n

F k n k                    (2.120) 

 
And 

 

3, 1,...,
( ) max (1/ )| ( ) ( / ) ( )|n t nt n

F k n k t n k                  (2.121) 

 
When considering the case of no deterministic component, and similarly , ( , )j nF p k  j = 1, 

2, and 3, when using the IM-OLS residuals , ( )t p k , for p t 0. 

 
Given the simple structure of these fluctuation statistics, it is immediate to check that 

(2.119) and (2.120) can also be written as 
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v v
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(1 2 )/2 (1 )

2, 1,...,
( ) max | ( )|v v

n tt n
F k n n k                  (2.123) 

And similarly, for the statistic measuring the maximum centered fluctuation (2.121), 
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( ) max | ( ) ( / ) ( )|v v v
n t nt n

F k n n k t n n k              (2.124) 

With the value of v = r1/2 denoting the cases of cointegration and no cointegration, 
respectively. From the results in Propositions 3.1 (b),(d), and 3.2, it is easy to check that both 
these quantities as the nonparametric kernel estimation based on the first difference of IM-OLS 
residuals with a bounded bandwidth parameter are of the same order of magnitude in any of the 
two possible situations. Thus, under cointegration (v = 1/2), we get that , ( )j nF k  and 2 ( )n nm  are 

(1)pO , while that under no cointegration (v = �1/2), we have that 1, ( )nF k  and 2 ( )n nm  are 
2( )pO n , and , ( ) ( )j n pF k O n , for j = 2, 3.  

 
This observation means that, when considering the building of asymptotically pivotal 

test statistics by combining the fluctuation measures in (2.119)-(2.121) and the estimator of the 
long-run conditional variance 2 ( )n nm , we will not obtain the desired consistency result (that is, 
divergence under the alternative). Despite this undesired result, we continue to define and to 
explore the behavior of the following set of statistics to test the null hypothesis of cointegration: 
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And 1
, ,( ) ( ) ( )j n n n j nF k m F k , for j = 2, 3, and similarly , ( , )j nF p k , j = 1, 2, 3 when using 

the IM-OLS residuals from (2.82) and (2.105). Next, we present the limiting distributional 
results of the fluctuation measures in (2.119)-(2.121) in the simplest case where there is no 
deterministic component, both under cointegration and under no cointegration, where the 
extension to the case of IM-OLS estimation with a trend function is trivial from the results in 
Propositions 3.1 and 3.3. Proposition 4.1. Under the null hypothesis of cointegration, that is 
when |D| < 1 in Assumption 2.1 with v = 1/2, then: 
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Where 
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( ) ( ) ( ) ( ) ( ) [ (1) ( )] ( )u k u k u kR r W r r s s ds s dW sg g g G G                 (2.127) 

 

With ( ) ( ( ) , ( ) )k kr r rg g W , 0( ) ( )r
k kr s dsg W , and similarly for , ( , )j nF p k , j = 1, 2, 

3, with . ( )u kR r  replaced by . , ( )u k pR r  in Proposition 3.1(b) or by . , ( )u k pR r  in Proposition 3.3(d), 

and the proper choice of ( )rg  depending on the assumption made about the deterministic 
component in the integrated regressors. Also, under the alternative hypothesis of no 
cointegration, that is when D = 1 in Assumption 2.1 with v = �1/2, then: 
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Where 
11 1
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With 0( ) ( )r
u uJ r B s ds , and similarly for 2

1, ( , )nn F p k , and 1
, ( , )j nn F p k , j = 2, 3, with 

( )kJ r  replaced by , ( )k pJ r  defined as 
11 1

, , ,
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )k p u p u pJ r J r r s s ds s J s dsg g g g                  (2.130) 

Where , 0 ,( ) ( )r
u p u pJ r B s ds .    

 
Proof. See Appendix A.6. 
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Next, by combining these last results with the one relating the limiting behavior of the 
nonparametric kernel estimator of the conditional long-run variance in Proposition 3.2 based on 
the first difference of the IM-OLS residuals with a bounded bandwidth, we get the following 
result characterizing the limiting distribution of the fluctuation test statistics introduced above. 

Corolary 4.2. Under the null hypothesis of cointegration, that is when |D| < 1 in 
Assumption 2.1 with v = 1/2, then: 

T T
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0 0 1 2
1, γ, γ, .

0
( ) (1 ) ( )n k k u kF k R s ds         (2.131) 

 
T T0 0 1/2
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And 
 

T T0 0 1/2
3, γ, γ, . .

[0,1]
( ) (1 ) sup | ( ) · (1)|n k k u k u k

r
F k R r r R        (2.133) 

 
While that , ( ) (1)j n pF k O , j = 1, 2, 3 under no cointegration, with 

T T
1

2 1 1 1 2
1, γ, γ,

0
( ) ω ( ) ( )n u k k kF k J s ds               (2.134) 

 
T T1 1 1 1/2

2, γ, γ, [0,1]( ) ω ( ) sup | ( )|n u k k r kF k J r        (2.135) 

 
And T T1 1 1 1/2

3, γ, γ, [0,1]( ) ω ( ) sup | ( ) (1)|n u k k r k kF k J r rJ , where the limiting random 

elements . ( )u kR r  and ( )kJ r  can be conveniently replaced by the one determining the limiting 
distribution of the IM-OLS residuals when including the adjustment for deterministic 
components in Propositions 3.1 and 3.3. The same applies to the structure of T0

γ,k  and T1
γ,k  

characterizing the limiting distribution of the IM-OLS estimator of J k . 
 
Proof. It follows directly by combining the results in Proposition 3.2 and 4.1 and the 

application of the continuous mapping theorem. 
 

Remark 4.1. These results clearly show that the random limits, both under the null of 
cointegration and under the alternative hypothesis of no cointegration, are free of nuisance 
parameters, and only depends on the number of integrated regressors and the structure of the 
deterministic component in the cointegrating regression and the assumption made on such 
components characterizing the generating process of the observed regressors. In the three cases, 
the tests are right-sided, rejecting the null of cointegration for high values of the corresponding 
test statistic. Also, from these results we may immediately conclude that the testing procedures 
for the null of cointegration based on these test statistics are inconsistent in the usual sense that 
the behavior under the alternative of no cointegration does not depend on the sample size, and 
hence there seems that they cannot correctly discriminate between these two situations. 
However, given that the random limits are very different in each case, we may expect to obtain 
certain useful results in terms of power. This last issue will be examined numerically. 
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Appendix B.2 (Tables B.2.1 and B.2.2) presents relevant quantiles of the null 
distribution of these three testing procedures, ,α( )jc k , for each specification of the deterministic 

component in the cointegrating regression as well as for each assumption on the underlying 
deterministic component characterizing the observations of the k integrated regressors in the 
model, for k = 1, ..., 5. These quantiles are computed numerically with 20000 replications and 
2000 observations, in the simplest case where 0 I[ H , 1(υ , ) ( , )t t k t kiidN  and D = 0. For 

computation of the estimator of the conditional long-run variance 2ω ( )n nm  in this simple setup, 

we consider the case mn = 0, so that 2ω ( ) κ (0)n n nm . As can be seen in equation (2.90) and in 
the proof of Proposition 3.2, under cointegration the first difference of the IM-OLS residuals are 
given by 

H J J1/2 1/2 1/2
, , ,( ) [ ( )] ( )v v
t p t k t k n k pz k z n n O n  

 
So that the short-run sample variance can be decomposed as 
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(2.136) 

 
This means that the limiting null distribution of κ (0)n  is given by 

 
Z : V 6 : Z
Z : Z T : 6 : T
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2 1 1

2 1 2 2 0 1/2 1/2 0
γ γ

0 1/2 1
. γ
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[σ (ω σ )]
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n u ku kk ku kk kk ku
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                   (2.137) 

 
Under serially uncorrelated error terms tu  and H ,k t , so that 2 2ω σu u , and : 6kk kk , 

and the additional assumption that these error terms are only contemporaneously correlated, that 
is Z Vku ku , then the above weak limit of κ (0)n , κ(0) , will reduce to T T2 0 0

. γ γκ(0) σ (1 )u k k k , 

with V 6 V2 2 1
.σ σu k u ku kk ku  the conditional short-run variance of tu  given H ,k t . Also, Tables 

B.2.3 and B.2.4 present the results of the power behavior in finite samples, when D = 1, of the 
testing procedure based on the test statistics 1, ( )nF k  and 1, ( , )nF p k  defined in (4.6) in each case 
considered before with a deterministic sample-dependent bandwidth given by mn = [d(n/100)1/4], 
for d = 1, 4, and 12. Alternatively, and for comparison purposes, we also compute the power 
performance of this fluctuation-based statistic when using the OLS-based estimator of the 

conditional long-run variance, Z : Z2 2 1
. , , , ,

ˆˆ ˆ ˆ ˆω ( ) ωu k n n n ku n kk n uk nm , denoted as 1,
ˆ ( , )nF p k .28  

 
 
 

                                                           
28 The quantiles of the asymptotic null distribution of the testing procedure based on the test statistic 
ˆ ˆ -2
1,n u.k,n n 1,n(p,k) = ω (m ) (p,k)F F  are different from those shown in Tables B.2.1 and B.2.2, are not presented 

here, but can be requested from the author. 
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These results are presented in Tables B.2.5 and B.2.6, and show the usual pattern of 
increasing power with the sample size that comes from the different rate of divergence of the 
numerator and denominator under no cointegration. However, for the test based on the statistic 

1, ( , )nF p k , the power performance is quite different, displaying an increasing power with the 

sample size for low dimensional models (k = 1, 2), decreasing for high dimensional models (k t 
3), but converging to a relatively acceptable common level that depends on the specification of 
the deterministic component (see Figures 2.1, 2.2). 

 
2.5 Conclusions and some extensions 
 
The present paper is devoted to the analysis of the asymptotically efficient estimation of a linear 
static cointegrating regression model by making use of a new recently proposed estimation 
method by Vogelsang and Wagner (2011), the so-called integrated modified OLS estimator 
(IM-OLS) that has the main advantage that does not require the choice of any tuning parameter, 
when we deal with deterministically trending integrated regressors. We show that this method 
must be modified to correctly accommodate the structure of the deterministic component of the 
regressors and to avoid possible inconsistencies in the estimation results. As a by product of 
these results, we propose the use of the IM-OLS residuals to build some new simple statistics to 
testing the null hypothesis of cointegration against the alternative of no cointegration.  
 
 

While the main component of these new test statistics seems to work well in detecting 
excessive fluctuations in the residual sequence under no cointegration, it is not yet clear how to 
obtain pivotal test statistics free of nuisance parameters and consistent tests given the difficulties 
in obtaining a proper estimator of a long-run variance. This central question will be studied in 
future work, as well as the consideration of more complex deterministic components and their 
treatment in the context of the IM-OLS estimation. 
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2.7 Appendix A. Mathematical proofs 
 
A.1 Proof of Proposition 2.1. By OLS detrending of the observed processes tY  and ,k tX , as 
defined by (2.1) and (2.2), we have that 
 

, 1
, , ,

, ,1,

ˆ
· 1,...,ˆ

n
t p jt

p j n pp p t
k t k jjkt p

Y YY
t nQX XX

W W                   (2.137) 

 
Each of the components above can be decomposed as 

 
1

, , , 1 , , , ,( )
i i i

n
it p i p p t j p j p j n pp p tQD W W W W      i = 0, 1, ..., k,                                         (2.138) 

 
Where 1

, , 1 , , , ,
n

it p i t j i j p j n pp p tQW W , and 

 



72 
 

,1 1
, , , , , , , , , ,

,1 1
1

, , ( ) ,
, , , ( )

,, ( ) ,( )( )

( : )

( : )

i

i i i i i i
i

i i i i i

i i i i i
ii i i i

n n
p t

p t p j p j n pp p t p t p j p j p p j n pp
p p tj j

n p p n p p p p t
p t n p p n p p p

p p tn p p p n p p p p

Q Q

Q Q
Q Q Q Q

W
W W W W W W W W W

W
W W

,
, 1, 1 1, 1

,
( : ) i

i i i i i i
i

p t
p t p p p p p p
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           (2.139) 

 
Given the block structure for the inverse of ,n ppQ , when pi < p for all i =  0,  1,  …,  k. 

Obviously, the same result directly holds when pi = p, while that if any pi > p, then we have 
1 1

, , 1 , , , , , , ,( ) , ,( ) ( )
i i i i i i

n
i p p t j p j p j n pp p t i p p p p t n p p p n pp p tQ Q QD W W W W D W W , which does not vanish 

and it is of order ( )ipO n . 
� 

A.2 Proof of Proposition 2.2. First, given that we can write 
 

1 1 1 1 1
, , , , , ,,

, , 1 1 1
, , ,1 , , , ,

( , )
n

pp n pk n pp n pp n pk n kk np tn
p tn k tn

k tn pk n kk nt kk n pk n pp n kk n

W
W K

K
Q Q M M Q Q
Q Q M Q Q M

 (2.140) 

 
Then using (2.23) we have that 
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      (2.141) 

And 
 

1 1 1 1 1
1, , , , , , ,1
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, , , , ,
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n

kukk n pk n pp n kk n kk n ku
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        (2.142) 

 
With nW  given in (2.5). Taking these results together we get (2.24). Second, given the 

sequence of FM-OLS residuals, defined by , , , , ,
ˆˆ ˆ( ) ( , )( , )t p t p t k t p n k nu k Y XW D E , with 

1
, , , ,( )t t p tn p n k p k t kY Y W * ) H J , can be written as 
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Or, in more compact form, as in (2.25) by using the equality 
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And  
 

1 1/2
1 , , 1 , , , , 1 , , 1 , ,( ) ( )n n n n

t k tn kt p t k tn k t p tn pp n t p jn k j t kt p kt pnQK H K H W W H K H .        (2.145) 

� 
A.3 Proof of Proposition 2.3. For proof of part (a), we have that the sequence 

, , ,ˆ( ) ( ( ), )t p t p k tk u k Z[  can be expressed as , , ,( ) ( ) ( )t p t p t pk k k[ X M , with 

, , ,ˆ( ) ( ( ), )t p t p k tk u kX H , and 1
, , ,( ) (0, )t p p tn p n kpkM W * ) , where , 1kp k p0)  when p = 0, and 

, 1( : )kp k p k0) )  when p t 1. The sample autocovariance covariance matrix of order |h| t 0, 

1 , ,
ˆ ( ) (1/ ) ( ) ( )n
n t h t p t h ph n k k6 [ [ , is decomposed as 
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Where 1 , ,( ) (1/ ) ( ) ( ) [ ]n p

n t h t p t h p t t hh n k k E6 X X [ [  under cointegration. For h = 

0 we have that 
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By the orthogonality condition 1 , , 1ˆ ( )n

t p tn t p pu k 0W , with 

1/2
, 1 , ,

n
pk n t p tn k tnD W H , and 1 1, ,

,, , ,1

0 0(1/ ) ( ) ( )
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k k
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So that we can write ˆ (0) (0)n n n n nC C F6 6 . For |h| t 1, we have that , ( )t p kM  

can be written as , , ,( ) ( ) ( / ) ( )t p t h p t pk k h n kdM M , where the last term is given by 
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With , 1, ,(0, ) ( / )h p tn p tn p p O h nCW W , and , (1,2,..., )p p diag pC . With this we 

have 
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And 

, , , ,
1 1

1 1
, , , ,

1 1

, ,
1

(1/ ) ( ) ( ) (1/ ) ( ) ( )

( ) ( ) ( / ) ( ) ( )

(1/ ) ( ) ( ) ( / )

n n

t p t h p t p t p
t h t

h n

t p t p t p t p
t t h
n

t p t p p
t

n k k n k k

n k k h n n k k

n k k O h n

d

M M M M

M M M

M M

  (2.151) 

So that ˆ ( ) ( ) ( / )n n n n n ph h O h nC C F6 6 . Then, the kernel estimator of the 

long-run covariance matrix, 1
( 1)

ˆ ˆ( ) ( / ) ( )n
n n h n n nm w h m h: 6 , is decomposed as 

 
1

( 1)

ˆ ( ) ( ) ( )( ) ( / ) ( / )
n

n
n n n n n n n n n n n p n

h n

mm m m w m w h m O h mnC C F: :            (2.152) 

Where 1
( 1)( ) ( / ) ( )n

n n h n n nm w h m h:  6 , and the last term is Op(mn/n). 

 

For proof of part (b), we have that under cointegration 1/2
,

ˆ ( ) ( )t p t pk O n[ [ , which 

gives 1 , ,
ˆ ˆ(1/ ) ( ) ( )n

t h t p t h pn k k[ [ 1/2
1(1/ ) ( )n

t h t t h pn o n[ [ , where ,( , )t t k tu[ H . 

This means that, under standard and suitable assumptions on the bandwidth choice, we get 
ˆ ( ) p
n nm: : . Also, taking , ,

ˆ
kt p kt pZ H  as has been defined in Proposition 2.2(b), then we 

have that the transformed observations of the dependent variable can be decomposed as 
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Which gives 
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Then, under cointegration and making use of the consistent estimation of Jk and ku' , 
we get the result stated in (2.33). 
� 

A.4 Proof of Proposition 3.2.  
 

Making use of the results in Proposition 3.1 and the structure of the first differences of 
the IM-OLS residuals in equation (3.25) we have that, under cointegration, we can write 
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With this, the hth-order sample serial covariance 1 , ,( ) (1/ ) ( ) ( )n
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which determines that the kernel estimator of the long-run variance 2 ( )n nm  can be written as 
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With 
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So that it can be verified that 

 
1 2
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          (2.158) 

 
Finally, taking into account that 0 1/2 0

, , . ,k n k k u k kk kJ J 4 : T  under the 

cointegration assumption, then it is immediate to obtain the result in (2.92) as 
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On the other hand, given that under the assumption of no cointegration the sequence of 

first differences of the IM-OLS residuals is now given by 
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With ( )t pz O n , then we have that , ( ) ( )t p pz k O n  and hence 
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With this we have that 

2 1 1
, ,

1
1 1 1/2

, ,

(1/ ) ( ) (1/ ) ( ( ))( ( ))

[ ( ) ] ( )[ ( )] (1 / ) ( )

n

n t p t h p
t h

k n k kn k n k p

n h n n z k n z k

n h n h n O nGJ J J J
    (2.162) 
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Thus, the scaled kernel estimator of the long-run variance is now given by 
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by making use of the convergence result 1 1 1/2 1

, , , ,( )k n k k u k k kn J J 4 : T , and the 

consistency result 1
, ( 1)( ) ( / ) ( )n p

kk n n h n n kn kkm w h m hG: : , which gives 
2 2 1 1 2 1 1

, , , ,(1/ ) ( )n n k kk k u k kn m 4 : 4 T T  

� 
A.5 Proof of Proposition 3.3. For the proof of parts (a) and (c), then partial summing 

from (2.27) gives 
 

, , ,
ˆˆ , 1,...,t p k kt p t pS U t nSE                   (2.165) 

 
So that 
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And thus 
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Making use of the convergence results in (2.23), (2.24) and (2.107), then under the 

cointegration assumption, that is when v = 1/2, we have that 
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Where the last two terms are based on the decomposition in (2.26). For the last term 

above, as in VW (equation (25), we can write 
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Or, equivalently, 
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Where the last equality comes from defining 0 0( ) ( ) ( )r r
p p pr s ds s dsG g g3 , with 

1/2 1/2
, ,( , )k k k kdiag3 : : , and ( ) · ( )p pr rg g3 . Also, by defining 2

. , . . ,( ) · ( )u k p u k u k pV r W r , with 
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As in equation (24) in VW, conditional on ( )k rB , the above limiting distribution 
(2.172) is N(02k, 42k), with 42k a well defined conditional asymptotic stochastic covariance 
matrix. Under no cointegration, that is, with v = �1/2 and nonstationarity of the error sequence 

tu , then we have 
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g g gE E
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    (2.173) 

Where , 0 ,( ) ( )r
u p u pJ r B s ds . As can be seen from (2.172) and (2.173), the convergence 

rates for the IM-OLS estimator of kE  are the same as when using OLS or any of the 
asymptotically equivalent and efficient estimation methods. 

 
For the proof of parts (b) and (d), then given the sequence of IM-OLS residuals in 

(2.112), the IM cointegrating regression equation in (2.105) and (2.167), we can write , ( )t p k  as 

1/2
1 3/2 1/2 ,

, , , , 1/2
,

( )ˆ ˆ( ) ( , ) 1,...,
( )

v
v k n k

t p t p kt p kt p v
k n k

n
k n n n t n

n
S T E E
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   (2.174) 

Under the cointegration assumption, making use of (3.22), (3.23) and the weak convergence of 
the IM-OLS estimators of Ek and Jk, the result (d) then follows by the continuous mapping 
theorem.A.6 Proof of Proposition 4.1. Part (a) follows directly from the results (a), (b) in 
Proposition 3.1 and the continuous mapping theorem for the functionals considered. For the 
proof of part (b), we use the result (c) in Proposition 3.1 with v = �1/2, which gives 
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Where 
3/2 3/2 1 1/2 3/2 1

, , , ,
ˆ( ) ( )t p t p k kt p t p pn n U n n n U O nTJ     (2.176) 

 
So that, using (A.6) above and the continuous mapping theorem we have that 

11 1
3/2

, , , ,
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t p k p u p u pn k J r J r r s s ds s J s dsg g g g    (2.177) 

With , 0 ,( ) ( )r
u p u pJ r B s ds  as in (2.9), which gives the desired results in the case of IM-

OLS estimation of the cointegrating regression with a general polynomial trend function of 
order p and no deterministic component in the observations of the integrated regressors, whereas 
the results for the case of no deterministic component in the cointegrating regression then follow 
trivially by making use of the IM-OLS residuals tζ (k)  and k kg(r) = (g (r) ,W (r) )  in Proposition 
3.1. The extension to the case of the IM-OLS residuals from estimating the cointegrating 
regression with OLS detrended observations of the model variables also follows trivially 
employing the results in Proposition 3.3. 

 

2.8 Appendix B. Critical values and other numerical results 
B.1 Quantiles of the limit distribution of the variance ratio test statistic for testing the null of no 
cointegration and empirical power performance 
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Table 2.1 Quantiles of the null distribution of the OLS-based variance ratio test statistic by 
Breitung (2002), ˆ ( , )nVR p k , for testing the null of no cointegration against the alternative of 

cointegration (left-sided test) 

 
 No deterministic component 
Quantiles, cD(k) k = 1 2 3 4 5 
0.01 0.0054 0.0035 0.0025 0.0019 0.0016 
0.025 0.0073 0.0047 0.0033 0.0025 0.0020 
0.05 0.0098 0.0061 0.0043 0.0032 0.0025 
0.1 0.0143 0.0088 0.0060 0.0044 0.0033 
0.25 0.0280 0.0163 0.0108 0.0077 0.0057 
0.50 0.0670 0.0374 0.0233 0.0160 0.0115 
0.75 0.1406 0.0844 0.0533 0.0355 0.0250 
0.90 0.2168 0.1486 0.0998 0.0680 0.0483 
0.95 0.2558 0.1907 0.1357 0.0953 0.0686 
0.975 0.2838 0.2248 0.1672 0.1228 0.0904 
0.99 0.3086 0.2633 0.2077 0.1549 0.1198 
 Constant term (p = 0) 
Quantiles, cD(k) k = 1 2 3 4 5 
0.01 0.0033 0.0023 0.0018 0.0014 0.0011 
0.025 0.0043 0.0029 0.0022 0.0017 0.0014 
0.05 0.0057 0.0037 0.0027 0.0021 0.0017 
0.1 0.0076 0.0049 0.0035 0.0026 0.0021 
0.25 0.0127 0.0078 0.0054 0.0040 0.0030 
0.50 0.0231 0.0138 0.0090 0.0064 0.0048 
0.75 0.0448 0.0246 0.0157 0.0108 0.0078 
0.90 0.0675 0.0427 0.0262 0.0175 0.0124 
0.95 0.0782 0.0559 0.0362 0.0237 0.0165 
0.975 0.0848 0.0665 0.0465 0.0311 0.0213 
0.99 0.0900 0.0779 0.0583 0.0413 0.0288 
 Constant term and linear trend (p = 1) 
Quantiles, cD(k)  k = 1 2 3 4 5 
0.01 0.0017 0.0013 0.0011 0.0009 0.0008 
0.025 0.0021 0.0017 0.0013 0.0011 0.0009 
0.05 0.0026 0.0020 0.0016 0.0013 0.0011 
0.1 0.0033 0.0025 0.0020 0.0016 0.0013 
0.25 0.0049 0.0037 0.0029 0.0023 0.0019 
0.50 0.0075 0.0056 0.0044 0.0035 0.0028 
0.75 0.0112 0.0086 0.0067 0.0053 0.0042 
0.90 0.0154 0.0122 0.0096 0.0076 0.0060 
0.95 0.0176 0.0146 0.0118 0.0094 0.0075 
0.975 0.0192 0.0164 0.0138 0.0111 0.0090 
0.99 0.0207 0.0185 0.0158 0.0133 0.0110 
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Table 2.2Finite sam
ple pow

er at 5%
 nom

inal level of the O
LS-based variance ratio test statistic by B

reitung (2002), 
ˆ

(
,

)
n

VR
p
k

, for testing the null of no 
cointegration against the alternative of cointegration (left-sided test). Results based on a local-to-unity fram

ew
ork of analysis, w

ith u
t  = D

n u
t�1  + X

t , D
n  = 1 � 

c/n 
 

 
N

o determ
inistic com

ponent 
 C

onstant term
 (p = 0) 

 C
onstant term

 and linear trend (p = 1) 
Sam

ple size, n 
 

k = 1 
2 

3 
4 

5 
 k = 1 

2 
3 

4 
5 

 k = 1 
2 

3 
4 

5 
n = 100 

c = 1 
0.0478 0.0528 0.0530 0.0500 0.0510  0.0630 0.0594 0.0614 0.0600 0.0660  0.0506 0.0506 0.0522 0.0510 0.0534 

 
5 

0.1018 0.0824 0.0742 0.0716 0.0736  0.1310 0.1122 0.0910 0.1006 0.0964  0.0850 0.0786 0.0860 0.0806 0.0832 
 

10 
0.1808 0.1544 0.1284 0.1186 0.1330  0.2454 0.2060 0.1894 0.1756 0.1674  0.1546 0.1488 0.1454 0.1272 0.1290 

 
20 

0.3436 0.2972 0.2806 0.2718 0.2406  0.5148 0.4442 0.4410 0.3898 0.3822  0.3810 0.3438 0.3362 0.3162 0.3078 
 

30 
0.4468 0.4480 0.4118 0.3708 0.3680  0.6700 0.6342 0.6370 0.6032 0.5662  0.6354 0.6030 0.5688 0.5648 0.5316 

 
40 

0.5884 0.5592 0.5328 0.4890 0.4626  0.7972 0.7658 0.7354 0.7400 0.7232  0.7816 0.7488 0.7276 0.7192 0.6994 
 

50 
0.6880 0.6404 0.6196 0.6092 0.5886  0.8654 0.8606 0.8574 0.8610 0.8420  0.8996 0.8784 0.8642 0.8560 0.8298 

n = 250 
c = 1 

0.0532 0.0486 0.0522 0.0502 0.0474  0.0682 0.0606 0.0608 0.0582 0.0580  0.0506 0.0498 0.0522 0.0532 0.0518 
 

5 
0.0962 0.0824 0.0774 0.0792 0.0802  0.1432 0.1242 0.1120 0.1064 0.1036  0.0844 0.0824 0.0842 0.0840 0.0740 

 
10 

0.1674 0.1380 0.1294 0.1252 0.1256  0.2460 0.1938 0.1898 0.1818 0.1722  0.1726 0.1446 0.1446 0.1342 0.1402 
 

20 
0.3338 0.2764 0.2626 0.2340 0.2226  0.4538 0.4316 0.3926 0.3436 0.3466  0.3700 0.3176 0.3058 0.2910 0.3098 

 
30 

0.4478 0.4048 0.3586 0.3578 0.3418  0.6236 0.5866 0.5650 0.5352 0.5336  0.5704 0.5286 0.5212 0.4964 0.4872 
 

40 
0.5356 0.4972 0.4798 0.4598 0.4336  0.7514 0.7216 0.7154 0.7006 0.6900  0.7274 0.7076 0.6866 0.6732 0.6492 

 
50 

0.6316 0.5650 0.5528 0.5536 0.5258  0.8198 0.8142 0.8002 0.7878 0.7744  0.8294 0.7892 0.7872 0.7716 0.7670 
n = 500 

c = 1 
0.0506 0.0478 0.0520 0.0512 0.0446  0.0650 0.0682 0.0626 0.0668 0.0618  0.0506 0.0562 0.0512 0.0514 0.0538 

 
5 

0.0864 0.0792 0.0754 0.0782 0.0724  0.1470 0.1206 0.1238 0.1138 0.1010  0.0830 0.0782 0.0784 0.0748 0.0740 
 

10 
0.1774 0.1338 0.1244 0.1228 0.1236  0.2368 0.1928 0.1844 0.1728 0.1768  0.1380 0.1396 0.1300 0.1366 0.1294 

 
20 

0.3234 0.2840 0.2634 0.2482 0.2378  0.4498 0.4298 0.4024 0.3830 0.3628  0.3860 0.3536 0.3062 0.2866 0.2802 
 

30 
0.4452 0.4012 0.3668 0.3426 0.3262  0.6290 0.5878 0.5738 0.5488 0.5286  0.5714 0.5288 0.4872 0.4766 0.4696 

 
40 

0.5310 0.4864 0.4422 0.4428 0.4224  0.7462 0.7222 0.7010 0.6858 0.6658  0.7062 0.6544 0.6394 0.6396 0.6148 
 

50 
0.5996 0.5688 0.5306 0.5076 0.4986  0.8066 0.7870 0.7874 0.7794 0.7656  0.8064 0.8090 0.7938 0.7808 0.7478 

n = 750 
c = 1 

0.0528 0.0546 0.0520 0.0510 0.0498  0.0654 0.0632 0.0650 0.0634 0.0646  0.0498 0.0538 0.0502 0.0540 0.0530 
 

5 
0.0950 0.0852 0.0756 0.0824 0.0802  0.1356 0.1204 0.1202 0.1186 0.1138  0.0878 0.0816 0.0840 0.0850 0.0834 

 
10 

0.1732 0.1416 0.1408 0.1212 0.1196  0.2474 0.2394 0.2012 0.1748 0.1556  0.1614 0.1354 0.1238 0.1152 0.1138 
 

20 
0.3128 0.2562 0.2568 0.2484 0.2372  0.4522 0.4238 0.3828 0.3714 0.3522  0.3546 0.3326 0.3064 0.2962 0.2908 



81 
  

30 
0.4304 0.3918 0.3858 0.3480 0.3222  0.6144 0.6066 0.5722 0.5292 0.5206  0.5554 0.5068 0.4900 0.4726 0.4620 

 
40 

0.5464 0.4784 0.4626 0.4352 0.4212  0.7368 0.6966 0.6630 0.6660 0.6542  0.7054 0.6632 0.6508 0.6268 0.6086 
 

50 
0.5910 0.5536 0.5328 0.5178 0.4930  0.8116 0.7912 0.7704 0.7676 0.7606  0.8290 0.7908 0.7780 0.7530 0.7538 

 
B

.2 Q
uantiles of the IM

-O
LS based fluctuation test statistics and finite-sam

ple pow
er results 

 Table 2.3 Q
uantiles of the null distribution of the fluctuation test statistics w

ith scaling factor given by the residual variance of the first differences of the IM
-

O
LS residuals. C

ase of determ
inistically trendless integrated regressors and results from

 the IM
-O

LS regression 
 

 
 

N
o determ

inistic com
ponent 

 C
onstant term

 (p = 0) 
 C

onstant term
 and linear trend (p = 1) 

Statistic 
Q

uantiles, c
D (k)                     

k = 1 
2 

3 
4 

5 
 k = 1 

2 
3 

4 
5 

 k = 1 
2 

3 
4 

5 

1, (
,

)
n

F
p
k

 
 

0.01 
0.0163 0.0114 0.0089 0.0074 0.0064  0.0129 0.0098 0.0080 0.0068 0.0059  0.0111 0.0089 0.0073 0.0064 0.0056 

0.025 
0.0191 0.0130 0.0100 0.0082 0.0070  0.0150 0.0110 0.0089 0.0074 0.0065  0.0126 0.0099 0.0081 0.0070 0.0061 

 
0.05 

0.0222 0.0145 0.0110 0.0089 0.0076  0.0170 0.0123 0.0097 0.0081 0.0070  0.0140 0.0108 0.0089 0.0076 0.0066 
 

0.1 
0.0265 0.0167 0.0124 0.0100 0.0084  0.0196 0.0139 0.0109 0.0090 0.0077  0.0160 0.0121 0.0099 0.0083 0.0072 

 
0.25 

0.0366 0.0216 0.0154 0.0120 0.0099  0.0258 0.0173 0.0132 0.0107 0.0090  0.0202 0.0149 0.0118 0.0098 0.0084 
 

0.50 
0.0550 0.0292 0.0198 0.0150 0.0121  0.0356 0.0227 0.0166 0.0132 0.0109  0.0269 0.0190 0.0146 0.0119 0.0100 

 
0.75 

0.0892 0.0413 0.0263 0.0191 0.0150  0.0511 0.0304 0.0214 0.0164 0.0133  0.0369 0.0246 0.0185 0.0146 0.0121 
 

0.90 
0.1476 0.0581 0.0343 0.0242 0.0183  0.0732 0.0404 0.0272 0.0203 0.0162  0.0498 0.0318 0.0228 0.0179 0.0145 

 
0.95 

0.2060 0.0745 0.0414 0.0281 0.0208  0.0908 0.0482 0.0318 0.0232 0.0181  0.0600 0.0375 0.0265 0.0203 0.0162 
 

0.975 
0.2867 0.0929 0.0488 0.0325 0.0235  0.1115 0.0569 0.0363 0.0262 0.0201  0.0713 0.0431 0.0300 0.0228 0.0181 

 
0.99 

0.4265 0.1261 0.0605 0.0380 0.0273  0.1431 0.0706 0.0428 0.0299 0.0229  0.0869 0.0525 0.0351 0.0262 0.0207 

2, (
,

)
n

F
p
k

 
0.01 

0.3585 0.3098 0.2764 0.2553 0.2396  0.3263 0.2878 0.2618 0.2446 0.2312  0.3039 0.2761 0.2568 0.2389 0.2247 
0.025 

0.3871 0.3289 0.2936 0.2697 0.2521  0.3492 0.3066 0.2776 0.2581 0.2428  0.3234 0.2925 0.2696 0.2504 0.2360 
 

0.05 
0.4150 0.3474 0.3085 0.2827 0.2634  0.3697 0.3239 0.2925 0.2710 0.2531  0.3426 0.3066 0.2819 0.2622 0.2462 

 
0.1 

0.4494 0.3727 0.3285 0.2994 0.2771  0.3987 0.3447 0.3105 0.2863 0.2674  0.3644 0.3252 0.2973 0.2766 0.2590 
 

0.25 
0.5218 0.4198 0.3651 0.3302 0.3044  0.4509 0.3846 0.3428 0.3147 0.2925  0.4084 0.3602 0.3279 0.3024 0.2828 

 
0.50 

0.6219 0.4858 0.4156 0.3713 0.3393  0.5228 0.4372 0.3860 0.3514 0.3243  0.4667 0.4069 0.3662 0.3372 0.3131 
 

0.75 
0.7633 0.5707 0.4776 0.4210 0.3809  0.6134 0.5018 0.4386 0.3942 0.3626  0.5398 0.4619 0.4122 0.3766 0.3487 

 
0.90 

0.9364 0.6665 0.5461 0.4745 0.4262  0.7162 0.5741 0.4952 0.4415 0.4030  0.6206 0.5242 0.4633 0.4203 0.3863 
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0.95 
1.0764 0.7426 0.5962 0.5130 0.4592  0.7892 0.6238 0.5341 0.4727 0.4308  0.6717 0.5657 0.4988 0.4490 0.4122 

 
0.975 

1.2319 0.8172 0.6441 0.5476 0.4894  0.8575 0.6710 0.5725 0.5040 0.4553  0.7257 0.6089 0.5309 0.4764 0.4383 
 

0.99 
1.4285 0.9302 0.7049 0.5955 0.5278  0.9471 0.7390 0.6198 0.5446 0.4888  0.7904 0.6599 0.5718 0.5105 0.4712 

3, (
,

)
n

F
p
k

 
0.01 

0.3859 0.3299 0.2974 0.2724 0.2540  0.3515 0.3070 0.2797 0.2600 0.2457  0.3260 0.2976 0.2743 0.2535 0.2383 
0.025 

0.4181 0.3558 0.3159 0.2894 0.2698  0.3792 0.3295 0.2996 0.2759 0.2592  0.3515 0.3151 0.2894 0.2682 0.2523 
 

0.05 
0.4503 0.3784 0.3343 0.3047 0.2836  0.4053 0.3498 0.3167 0.2915 0.2732  0.3717 0.3319 0.3047 0.2836 0.2653 

 
0.1 

0.4934 0.4092 0.3598 0.3260 0.3020  0.4384 0.3767 0.3395 0.3115 0.2898  0.4001 0.3557 0.3249 0.3013 0.2821 
 

0.25 
0.5797 0.4704 0.4089 0.3673 0.3373  0.5065 0.4296 0.3822 0.3494 0.3239  0.4588 0.4020 0.3646 0.3368 0.3137 

 
0.50 

0.7012 0.5596 0.4782 0.4265 0.3886  0.6065 0.5042 0.4439 0.4018 0.3716  0.5408 0.4681 0.4212 0.3860 0.3584 
 

0.75 
0.8603 0.6748 0.5701 0.5045 0.4564  0.7358 0.6013 0.5241 0.4730 0.4345  0.6479 0.5553 0.4939 0.4508 0.4166 

 
0.90 

1.0578 0.8159 0.6796 0.5952 0.5338  0.8844 0.7158 0.6214 0.5554 0.5097  0.7771 0.6588 0.5820 0.5281 0.4875 
 

0.95 
1.2031 0.9142 0.7603 0.6588 0.5899  0.9872 0.7957 0.6866 0.6125 0.5619  0.8681 0.7342 0.6479 0.5829 0.5377 

 
0.975 

1.3674 1.0089 0.8348 0.7254 0.6416  1.0776 0.8809 0.7535 0.6752 0.6118  0.9559 0.8060 0.7024 0.6360 0.5838 
 

0.99 
1.5734 1.1525 0.9379 0.8092 0.7179  1.2116 0.9821 0.8375 0.7473 0.6752  1.0620 0.8862 0.7761 0.7079 0.6432 
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Table 2.4 Quantiles of the null distribution of the fluctuation test statistics with scaling factor 
given by the residual variance estimator based on the first difference of IM-OLS residuals. Case 

of deterministically trending integrated regressors and results from the IM-OLS regression 
based on OLS detrended observations 

 

 

Table 2.5 Finite-sample power of the test statistic 1, ( , )nF p k  deterministically trendless integrated 
regressors, at the 5% nominal level, with a nonparametric kernel estimator of the CLRV based 

on first differences of IM-OLS residuals based on the Bartlett kernel and bandwidth mn = 
[d(n/100)1/4], d = 12 

 
  Sample size, n 
  100 250 500 750 1000 
No deterministics k = 1 0.0678 0.1702 0.2888 0.3650 0.3894 

 2 0.1932 0.2300 0.3738 0.4076 0.4486 
 3 0.7804 0.3754 0.4528 0.5064 0.4876 
 4 0.9884 0.6846 0.5386 0.5694 0.5534 
 5 0.9998 0.9434 0.7314 0.6808 0.6460 
Case p = 0 k = 1 0.2120 0.3874 0.5234 0.6108 0.6456 
 2 0.5548 0.4322 0.5164 0.5942 0.6096 
 3 0.9578 0.6714 0.58100 0.6340 0.6498 
 4 0.9990 0.9090 0.7362 0.6848 0.7118 

 Quantiles Constant term (p = 0) 
 Constant term and linear trend (p = 

1) 
Statistic cD(k) k = 1 2 3 4 5  k = 1 2 3 4 5 

1, ( , )nF p k  
 

0.01 0.0146 0.0107 0.0083 0.0071 0.0062  0.0118 0.0092 0.0076 0.0066 0.0058 

0.025 0.0167 0.0119 0.0093 0.0078 0.0067  0.0135 0.0103 0.0085 0.0072 0.0063 
 0.05 0.0188 0.0132 0.0103 0.0085 0.0072  0.0154 0.0115 0.0093 0.0078 0.0069 
 0.1 0.0221 0.0152 0.0115 0.0094 0.0080  0.0176 0.0129 0.0103 0.0087 0.0075 
 0.25 0.0296 0.0192 0.0141 0.0113 0.0094  0.0226 0.0161 0.0125 0.0103 0.0087 
 0.50 0.0424 0.0254 0.0180 0.0140 0.0115  0.0306 0.0207 0.0156 0.0126 0.0104 
 0.75 0.0629 0.0344 0.0233 0.0176 0.0141  0.0427 0.0274 0.0199 0.0156 0.0128 
 0.90 0.0940 0.0464 0.0301 0.0219 0.0171  0.0592 0.0360 0.0251 0.0191 0.0154 
 0.95 0.1229 0.0562 0.0359 0.0250 0.0193  0.0734 0.0428 0.0290 0.0218 0.0173 
 0.975 0.1579 0.0684 0.0405 0.0286 0.0217  0.0878 0.0506 0.0332 0.0245 0.0193 
 0.99 0.2061 0.0848 0.0494 0.0334 0.0247  0.1104 0.0616 0.0390 0.0280 0.0219 

2, ( , )nF p k
 

0.01 0.3415 0.2993 0.2727 0.2498 0.2352  0.3172 0.2831 0.2605 0.2432 0.2297 
0.025 0.3635 0.3177 0.2868 0.2646 0.2472  0.3355 0.3000 0.2743 0.2563 0.2415 

 0.05 0.3871 0.3351 0.3007 0.2759 0.2579  0.3556 0.3145 0.2869 0.2668 0.2513 
 0.1 0.4156 0.3565 0.3183 0.2920 0.2715  0.3779 0.3335 0.3032 0.2809 0.2644 
 0.25 0.4735 0.3988 0.3517 0.3211 0.2970  0.4266 0.3705 0.3342 0.3085 0.2879 
 0.50 0.5546 0.4557 0.3968 0.3590 0.3300  0.4884 0.4201 0.3754 0.3437 0.3188 
 0.75 0.6599 0.5243 0.4511 0.4045 0.3700  0.5670 0.4805 0.4240 0.3848 0.3551 
 0.90 0.7807 0.6047 0.5120 0.4511 0.4104  0.6541 0.5457 0.4760 0.4283 0.3935 
 0.95 0.8637 0.6603 0.5490 0.4831 0.4384  0.7160 0.5908 0.5104 0.4562 0.4214 
 0.975 0.9487 0.7108 0.5876 0.5140 0.4660  0.7739 0.6301 0.5499 0.4869 0.4451 
 0.99 1.0635 0.7835 0.6423 0.5621 0.5018  0.8391 0.6902 0.5895 0.5245 0.4791 

3, ( , )nF p k
 

0.01 0.3415 0.2993 0.2727 0.2498 0.2352  0.3172 0.2831 0.2605 0.2432 0.2297 
0.025 0.3635 0.3177 0.2868 0.2646 0.2472  0.3355 0.3000 0.2743 0.2563 0.2415 

 0.05 0.3871 0.3351 0.3007 0.2759 0.2579  0.3556 0.3145 0.2869 0.2668 0.2513 
 0.1 0.4156 0.3565 0.3183 0.2920 0.2715  0.3779 0.3335 0.3032 0.2809 0.2644 
 0.25 0.4735 0.3988 0.3517 0.3211 0.2970  0.4266 0.3705 0.3342 0.3085 0.2879 
 0.50 0.5546 0.4557 0.3968 0.3590 0.3300  0.4884 0.4201 0.3754 0.3437 0.3188 
 0.75 0.6599 0.5243 0.4511 0.4045 0.3700  0.5670 0.4805 0.4240 0.3848 0.3551 
 0.90 0.7807 0.6047 0.5120 0.4511 0.4104  0.6541 0.5457 0.4760 0.4283 0.3935 
 0.95 0.8637 0.6603 0.5490 0.4831 0.4384  0.7160 0.5908 0.5104 0.4562 0.4214 
 0.975 0.9487 0.7108 0.5876 0.5140 0.4660  0.7739 0.6301 0.5499 0.4869 0.4451 
 0.99 1.0635 0.7835 0.6423 0.5621 0.5018  0.8391 0.6902 0.5895 0.5245 0.4791 
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 5 1.0000 0.9898 0.8588 0.7906 0.7970 
Case p = 1 k = 1 0.3006 0.4066 0.6026 0.7138 0.7464 
 2 0.8380 0.4848 0.5740 0.6534 0.6656 
 3 0.9906 0.7410 0.6716 0.6788 0.7030 
 4 0.9998 0.9544 0.7850 0.7310 0.7580 
 5 1.0000 0.9960 0.9066 0.8590 0.8240 

 

Table 2.6 Finite-sample power of the test statistic 1, ( , )nF p k  with deterministically trending 
integrated regressors, at the 5% nominal level, with nonparametric kernel estimator of the 

CLRV based on the first difference of the IM-OLS residuals, Bartlett kernel and bandwidth mn = 
[d(n/100)1/4] 

 
   Sample size, n 
  d 100 250 500 750 1000 
Case p =0 k = 1 1 0.5985 0.6600 0.6705 0.6805 0.6605 
  4 0.4495 0.5620 0.6455 0.6250 0.6270 
  12 0.2546 0.3634 0.5122 0.5662 0.5798 
 2 1 0.5620 0.6570 0.6190 0.6390 0.6385 
  4 0.4460 0.5465 0.6235 0.6095 0.6065 
  12 0.5896 0.4344 0.4926 0.5504 0.5708 
 3 1 0.6000 0.6465 0.6605 0.6425 0.6705 
  4 0.5600 0.5240 0.6320 0.6655 0.6325 
  12 1.0000 0.6522 0.5504 0.6116 0.5946 
 4 1 0.6480 0.6810 0.7065 0.6935 0.6990 
  4 0.7390 0.6240 0.6705 0.6895 0.6930 
  12 1.0000 0.9440 0.7106 0.6956 0.6656 
 5 1 0.6825 0.6935 0.7355 0.7395 0.7330 
  4 0.9320 0.7145 0.6985 0.7300 0.7300 
  12 1.0000 1.0000 0.8590 0.7834 0.7492 
Case p =1 k = 1 1 0.7155 0.7565 0.7905 0.7800 0.7985 
  4 0.4765 0.6770 0.7490 0.7845 0.7795 
  12 0.3470 0.4666 0.6180 0.6784 0.6960 
 2 1 0.6365 0.7140 0.7355 0.7280 0.7390 
  4 0.5360 0.6370 0.6905 0.7455 0.7325 
  12 0.9286 0.5276 0.5892 0.6312 0.6614 
 3 1 0.6210 0.7130 0.7445 0.7545 0.7410 
  4 0.6565 0.6560 0.7130 0.7520 0.7430 
  12 1.0000 0.8208 0.6582 0.6728 0.6712 
 4 1 0.6540 0.7425 0.7625 0.7670 0.7405 
  4 0.8555 0.7435 0.7675 0.7645 0.7590 
  12 1.0000 0.9894 0.8002 0.7326 0.7404 
 5 1 0.6975 0.7720 0.7690 0.7725 0.7710 
  4 0.9805 0.8285 0.7820 0.7810 0.7810 
  12 1.0000 1.0000 0.9300 0.8368 0.8148 
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Figure 2.1 Finite-sample power of 1, ( , )nF p k  with deterministically trendless integrated regressors 

 
 

 

 
 
 

Figure 2.2 Finite-sample power of 1, ( , )nF p k  with deterministically trending integrated regressors 
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Table 2.7 Finite-sample power of the test statistic 1,
ˆ ( , )nF p k  with deterministically trendless 

integrated regressors, at the 5% nominal level, with nonparametric kernel estimator of the 
CLRV based on OLS residuals, Bartlett kernel and bandwidth mn = [d(n/100)1/4], d = 12 

 

 

Table 2.8 Finite-sample power of the test statistic 1,
ˆ ( , )nF p k  with deterministically trending 

integrated regressors, at the 5% nominal level, with nonparametric kernel estimator of the 
CLRV based on OLS residuals, Bartlett kernel and bandwidth mn = [d(n/100)1/4], d = 12 

 
  Sample size, n 
  100 250 500 750 1000 

Case p = 0 k = 1 0.2704 0.5786 0.7970 0.8882 0.9410 
 2 0.2230 0.4998 0.7952 0.8926 0.9426 
 3 0.1596 0.3970 0.7596 0.8866 0.9298 
 4 0.1290 0.3560 0.7042 0.8696 0.9168 
 5 0.1674 0.2936 0.6440 0.8288 0.9118 
Case p = 1 k = 1 0.2640 0.5726 0.8272 0.9118 0.9550 
 2 0.1750 0.4746 0.7616 0.8878 0.9362 
 3 0.1928 0.4138 0.7290 0.8688 0.9240 
 4 0.2152 0.3504 0.6736 0.8458 0.9188 
 5 0.2290 0.3262 0.6118 0.8200 0.9076 

 
 
 
 
 
 
 
 
 
 

  Sample size, n 
  100 250 500 750 1000 
No deterministics k = 1 0.1810 0.3354 0.5324 0.6570 0.7348 

 2 0.1396 0.3270 0.6354 0.7332 0.8266 
 3 0.1120 0.3148 0.6338 0.7762 0.8548 
 4 0.0840 0.2712 0.6092 0.7674 0.8674 
 5 0.0770 0.2166 0.5558 0.7490 0.8620 
Case p = 0 k = 1 0.2396 0.5388 0.8252 0.9088 0.9444 
 2 0.1640 0.4612 0.7908 0.9006 0.9370 
 3 0.1472 0.4144 0.7294 0.8808 0.9364 
 4 0.1306 0.3466 0.6686 0.8456 0.9304 
 5 0.1528 0.2910 0.6324 0.8226 0.9014 
Case p = 1 k = 1 0.2024 0.5216 0.8184 0.9192 0.9574 
 2 0.1478 0.4354 0.7602 0.8828 0.9366 
 3 0.1250 0.3836 0.7218 0.8648 0.9322 
 4 0.1546 0.3046 0.6606 0.8438 0.9250 
 5 0.1916 0.2526 0.6158 0.8086 0.8976 

 


